Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mới lớp 7 thui, mình ko bít lớp 8, xin lỗi, tha lỗi cho mình nha.
\(a.\) Ta có: \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}=\frac{3y^3-\left(6y^2+y^2\right)+\left(2y+3y\right)-1}{2y^3+\left(3y^2-4y^2\right)-\left(6y-2y\right)+3}\)
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^2+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}\)
\(B=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
\(b.\)Ta có: \(\frac{2B}{2y+3}=\frac{2.\frac{3y-1}{2y+3}}{2y+3}=\frac{\frac{2.\left(3y-1\right)}{2y+3}}{2y+3}=\frac{2.\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\)
\(\Rightarrow\)\(2y+3\inƯ\left(2\right)\)mà \(Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
Vì \(2y+3\)là số nguyên lẻ \(\Rightarrow\)\(2y+3=-1\) hoặc \(2y+3=1\)
\(2y=\left(-1\right)-3=-4\) \(2y=1-3=-2\)
\(y=\left(-4\right)\div2=-2\) \(y=\left(-2\right)\div2=-1\)
Vậy để \(\frac{2B}{2y+3}\in Z\) thì \(y=-2\) hoặc \(y=-1\)
\(c.\)Để \(B\ge1\)\(\Rightarrow\)\(B-1\ge0\) hay \(\frac{3y-1}{2y+3}-1\ge0\)\(\Rightarrow\)\(\frac{y-4}{2y+3}\ge0\)
* Trường hợp 1: \(y-4\ge0\) và \(2y+3>0\)
\(\Rightarrow\) \(y\ge4\) \(\Rightarrow\) \(2y\)\(>-3\)
* \(\Rightarrow\)\(y\)\(>-\frac{3}{2}\)
Vậy \(y\ge4\)
* Trường hợp 2: \(y-4\)\(\le\)\(0\) và \(2y+3\) \(< 0\)
\(\Rightarrow\)\(y\le4\) \(\Rightarrow\)\(2y< 3\)
\(\Rightarrow\)\(y< \frac{3}{2}\)
Vậy \(y\le4\)
\(B=\frac{3y^3-y^2-6y^2+2y+3y-1}{2y^3+3y^2-4y^2-6y+2y+3}=\frac{y^2\left(3y-1\right)-2y\left(3y-1\right)+\left(3y-1\right)}{y^2\left(2y+3\right)-2y\left(2y+3\right)+\left(2y+3\right)}=\frac{\left(3y-1\right)\left(y-1\right)^2}{\left(2y+3\right)\left(y-1\right)^2}=\frac{3y-1}{2y+3}\)
b) \(\frac{2B}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\in Z\) =. 2y+3 thuộc U(2) ={ -2;-1;1;2} => x thuộc {-1 ; -2}
hoặc (2y+3)2 =3y -1 =>
hoặc (2y+3)2 =-3y +1 =>
c) B>/1
+Nếu 2y+3 >0 hay y> -3/2
=> 3y -1 > 2y+3 => y >4 => y thuộc { 5;6;7...}
+ Nếu 2y+3<0 hay y < -3/2
=> 3y -1 < 2y+3 => y <4 => y thuộc { -2;-3;-4.....}
Bài 1:
a: \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1-x^2-2x-1+4}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{x+1}\)
b: \(=\dfrac{xy\left(x^2+y^2\right)}{x^4y}\cdot\dfrac{1}{x^2+y^2}=\dfrac{x}{x^4}=\dfrac{1}{x^3}\)
c: Đề thiếu rồi bạn
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....