K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)

Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBDcó CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

25 tháng 11 2019

a) 

Vì BN = DQ , AD = BC => AD - DQ = BC - BN hay AQ = NC 

Xét tam giác AQM và CNP có:

\(\hept{\begin{cases}AQ=CN\\AM=CP\\\widehat{QAM}=\widehat{NCP}\left(doABCDl\text{à}hbh\right)\end{cases}}\)

\(\Rightarrow\Delta AQM=\Delta CNP\left(c.g.c\right)\Rightarrow QM=NP\)

Hoàn toàn tương tự: △MBN=△PDQ(c.g.c)⇒MN=PQ

Tứ giác MNPQMNPQ có 2 cặp cạnh đối bằng nhau nên là hình bình hành.

=> MNPQ là hình bình hành.

b) Gọi K là giao điểm của AC và MP

Xét tam giác AKM và CKP ta có:
\(\hept{\begin{cases}\widehat{KAM}=\widehat{KCP}\left(slt\right)\\\widehat{KMA}=\widehat{KPC\left(slt\right)}\\\Rightarrow AM=CP\end{cases}}\) 

\(\Rightarrow\Delta AKM=\Delta CKP\left(g.c.g\right)\)

\(\Rightarrow AK=CK;KM=KP\left(1\right)\)

Vì ABCDABCD là hình bình hành nên hai đường chéo AC,BDAC,BD cắt nhau tại trung điểm mỗi đường. Tương tự, MNPQMNPQ là hình bình hành nên MP,QNMP,QN cắt nhau tại trung điểm mỗi đường

Mà từ (1)(1) suy ra KK là trung điểm của AC,MPAC,MP, do đó KK cũng là trung điểm của BD,QNBD,QN

Do đó AC,BD,MP,NQAC,BD,MP,NQ đồng quy tại (trung điểm) KK.

Xét ΔMBN và ΔPDQ có

MB=PD

góc B=góc D

BN=DQ

=>ΔMBN=ΔPDQ

=>MN=PQ

Xét ΔAMQ và ΔCPN có

AM=CP

góc A=góc C

AQ=CN

=>ΔAMQ=ΔCPN

=>MQ=PN

mà MN=PQ

nên MNPQ là hình bình hành

a:

ABCD là hình thoi

=>AC vuông góc BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD

AM+MB=AB

PC+PD=DC

mà AM=PC và AB=DC

nên MB=PD

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: Xét tứ giác AQCN có

AQ//CN

AQ=CN

Do đó: AQCN là hình bình hành

=>AC cắt QN tại trung điểm của mỗi đường

=>O là trung điểm của QN

=>N,O,Q thẳng hàng

c: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD

=>MQ vuông góc AC

Xét ΔABC có

BM/BA=BN/BC

nên MN//AC

=>MQ vuông góc MN

BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường

=>O là trung điểm của MP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

góc NMQ=90 độ

Do đó: MNPQ là hình chữ nhật

1 tháng 9 2023

Mình cảm ơn ạ

16 tháng 11 2021

Xét ΔADB có 

M là trung điểm của AB

P là trung điểm của AD

Do đó: MP là đường trung bình của ΔADB

Suy ra: MP//BD và MP=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

Q là trung điểm của CD

Do đó: NQ là đường trung bình của ΔBCD

Suy ra: NQ//BD và NQ=BD/2(2)

Từ (1) và (2) suy ra MP//NQ và MP=NQ

hay MPQN là hình bình hành