Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)
\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)
\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)
\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)
\(\Leftrightarrow-zy+x^2=-x^2+yz\)
\(\Leftrightarrow-2x^2=-2zy\)
\(\Leftrightarrow x^2=yz\)(đpcm)
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)
[ab(ab-2cd)+c2 d2 ] [ab(ab-2)+2(ab+1)=0<=>(a2b2-2abcd+c2d2)(a2b2-2ab+2ab+2)=0
<=>[(a2b2 - abcd)+(-abcd+c2d2)](a2b2+2)=0<=>ab(ab-cd)-cd(ab-cd)=0(vì a2b2 > 0)
<=>(ab-cd)2=0<=>ab=cd
Đề bài là cm à?
Ta có:
2bd=c(b+d)
=>(a+c)d=c(b+d)
=>ad+cd=cb+cd
=>ad+cd-cd=bc
=>ad=bc
=>a/b=c/d(đpcm)
a) Ta có \(\hept{\begin{cases}a+c=2b\left(1\right)\\2bd=c\left(b+d\right)\left(2\right)\end{cases}}\)
Thay (1) vào (2) ta có : \(\left(a+c\right).d=c\left(b+d\right)\)
\(\Rightarrow ad+cd=bc+cd\)
\(\Rightarrow ad=bc\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(\text{đpcm}\right)\)
b) Ta có : a2 = bc
=> \(\frac{a}{b}=\frac{a}{c}\)
Đặt \(\frac{a}{b}=\frac{a}{c}=k\)
=> a = bk = ck
Khi đó : \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+a}{a-c}=\frac{c+ck}{ck-c}=\frac{c\left(1+k\right)}{c\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a+b}{a-b}=\frac{c+a}{a-c}\left(\text{đpcm}\right)\)
a) Thay \(a+c=2b\) vào \(2bd=c\left(b+d\right)\)
\(\Rightarrow\)\(2bd=c\left(b+d\right)\)\(=\left(a+c\right)d=c\left(b+d\right)\)
\(\Rightarrow ad+cd=cb+cd\Rightarrow ad=cb\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\) với \(\forall b,d\ne0\) (đpcm)
b) Tìm tất cả các số nguyên tố (x;y) thỏa mãn đẳng thức: x^2 - 2y^2 = 1? | Yahoo Hỏi & Đáp
b) Giải:
Ta có: \(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\) \((*)\)
Ta xét hai trường hợp:
Trường hợp 1: Nếu \(x\) chia hết cho \(3.\)
Mà \(x\) là số nguyên tố \(\Leftrightarrow x=3\) thay vào \((*)\) ta có:
\(3^2-1=2y^2\Leftrightarrow2y^2=8\Leftrightarrow y=2\)
Trường hợp 2: Nếu \(x\) không chia hết cho \(3.\)
\(\Leftrightarrow\left(x^2-1\right)⋮3\Leftrightarrow2y^2⋮3.\) Mà \(\left(2;3\right)=1\)
\(\Leftrightarrow y⋮3\) khi đó \(x^2=19\) \(\Leftrightarrow x=\sqrt{19}\notin P\)
Vậy \(\left(x,y\right)=\left(3;2\right)\)