K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a}{b}<\frac{a+n}{b+n}\)

áp dụng từ đó ta có thể so sánh. 

ví dụ: 2/7 và 4/9

ta thấy 2<7 => \(\frac{2}{7}<\frac{2+2}{7+2}=\frac{4}{9}\)

cứ thế làm tiếp nha. ở 3 ví dụ này mình thấy a đều nhỏ hơn b đó. vậy là đều nhỏ hơn rồi

10 tháng 9 2017

nếu a/b<1 => a/b< a+n/ b+n

nếu a/b>1=> a/b> a+n/ b+n

còn các câu áp dụng thì tự làm nhé

5 tháng 6 2019

Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)

Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)

Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)

Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)

+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)

+) Với \(a< 0\Rightarrow b>0;c=0\)

6 tháng 6 2019

zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi 

-) b ko thể bằng c

-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm 

-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét

Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)

Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm

Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0

Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương

Vậy ... (tự kết luận) 

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

11 tháng 7 2015

(+) Th1 : a = b 

=> \(\frac{a}{b}=1\) và \(\frac{a+n}{b+n}=1\)

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

(+) th2 : a < b 

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

Vì a < b và n thuộc N* => an < bn => ab + an < ab + bn => \(\frac{ab+an}{b\left(b+n\right)}<\frac{ab+bn}{b\left(b+n\right)}\)

=> \(\frac{a}{b}<\frac{a+n}{b+n}\)

(+) Th3 : a > b tương tự TH2 .

 => \(\frac{a}{b}>\frac{a+n}{b+n}\)

26 tháng 7 2020

Ta có: a/b<a+n/b+n <=> a(b+n)<b(a+n) 

                                      <=> a.b+a.n<b.a+b.n

                                      <=> a.n<b.n

                                      <=> a<b                                                =>a/b<a+n/b+n <=> a<b

    Tương tự: a/b>a+n/b+n <=> a>b

21 tháng 8 2015

a, Để x là số nguyên

=> a - 5 chia hét cho a

Vì a chia hết cho a

=> -5 chia hết cho a

=> a \(\in\){1; -1; 5; -5}


\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b\left(b+n\right)}\)

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b\left(b+n\right)}\)

TH1: a = b

=> an = bn

=> ab+an = ab+bn

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

TH2: a > b

=> an > bn

=> ab + an > ab + bn

=> \(\frac{a}{b}>\frac{a+n}{b+n}\)

TH3: a < b

=> an < bn

=> ab + an < ab + bn

=> \(\frac{a}{b}<\frac{a+n}{b+n}\)

 

19 tháng 6 2017

Câu hỏi của Hà Huệ - Toán lớp 7 - Học toán với OnlineMath

19 tháng 6 2017

Bài toán không đủ dữ kiện, vì a>b sẽ có kết quả khác với a<b

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8