K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a) \(\sqrt{x^2-10+25}\)=lx-5l=2

=>x=7 hoặc x=3

b) bình phường lên ta đc x^2-2x=25

từ đây bạn giải bình thường là đc chúc hk tốt

29 tháng 9 2020

a) đk: \(x\ge2\)

Ta có: \(\sqrt{x}+\sqrt{x-2}=2\sqrt{x-1}\) (đã sửa đề)

\(\Leftrightarrow x+2\sqrt{x\left(x-2\right)}=4\left(x-1\right)\)

\(\Leftrightarrow3x-4=2\sqrt{x^2-2x}\)

\(\Leftrightarrow9x^2-24x+16=4\left(x^2-2x\right)\)

\(\Leftrightarrow5x^2-16x+16=0\)

\(\Leftrightarrow5\left(x^2-\frac{16}{5}x+\frac{64}{25}\right)+\frac{16}{5}=0\)

\(\Leftrightarrow5\left(x-\frac{8}{5}\right)^2=-\frac{16}{5}\) vô lý

=> PT vô nghiệm

29 tháng 9 2020

b) Đề chắc là: \(x^2+x+12=\sqrt{36}\)

\(\Leftrightarrow x^2+x+12-6=0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\) vô lý

=> PT vô nghiệm

4 tháng 8 2018

Bmin=5 xay ra dau= khi va chi khi x=5

4 tháng 8 2018

\(B=\sqrt{x^2-10x+34}+\sqrt{x^2-10x+29}\)

\(=\sqrt{\left(x-5\right)^2+9}+\sqrt{\left(x-5\right)^2+4}\)\(\ge\)\(\sqrt{9}+\sqrt{4}=5\)

Vậy Min \(B=5\)khi  \(x=5\)

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

31 tháng 5 2016

a)Ta có :  \(\sqrt{x}=x\left(DK:x\ge0\right)\)

\(\Leftrightarrow x=x^2\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Rightarrow x=0\)(nhận ) hoặc \(x=1\)(Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{0;1\right\}\)

b) \(\sqrt{x^2+x+1}=x+2\left(DK:x\ge-2\right)\)

\(\Leftrightarrow x^2+x+1=\left(x+2\right)^2\)\(\Leftrightarrow x^2+x+1=x^2+4x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)( Nhận)

Vậy tập nghiệm của phương trình là : \(S=\left\{-1\right\}\)

c) \(\sqrt{x^2-10x+25}=x-3\left(DK:x\ge3\right)\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=x-3\Leftrightarrow\left|x-5\right|=x-3\)(1)

Đến đây ta xét hai trường hợp : 

1. Với  \(3\le x< 5\)phương trình (1) tương đương với : 

\(5-x=x-3\Leftrightarrow2x=8\Leftrightarrow x=4\)(Nhận)

2.  Với \(x\ge5\)phương trình (1) tương đương với : 

\(x-5=x-3\Rightarrow-5=-3\)( vô lí )

Vậy tập nghiệm của phương trình là : \(S=\left\{4\right\}\)

c) \(\sqrt{x-2}+\sqrt{2-x}=0\)

Ta có điều kiện xác định của phương trình là : \(\hept{\begin{cases}x-2\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le2\end{cases}\Rightarrow}x=2}\)

Thử lại với x = 2 ta thấy thoả mãn nghiệm của phương trình.

Vậy tập nghiệm của phương trình là : \(S=\left\{2\right\}\)

9 tháng 7 2019

mn giúp tớ mới

20 tháng 9 2019

là giải pt nha m.n

20 tháng 9 2019

dễ mà bạn

\(\sqrt{4x-8}-\sqrt{x-2}=2.\)

ĐK \(x\ge2\)

PT<=> \(2\sqrt{x-2}-\sqrt{x-2}=2\)

<=> \(\sqrt{x-2}=2\)

<=> x-2=4

<=> x=6 (t/m)

Vậ pt có nghiệm x=6

29 tháng 5 2019

mơn bn nha