Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết ta dễ thấy dấu "=" xảy ra khi a=1, b=3, c=5
Áp dụng BĐT Cauchy Schawrz, ta có:
\(a^2+\frac{b^2}{3}+\frac{c^2}{5}\ge\frac{\left(a+b+c\right)^2}{1+3+5}\Rightarrow2\sqrt{a^2+\frac{b^2}{3}+\frac{c^2}{5}}\ge\frac{2\left(a+b+c\right)}{3}\)
\(\frac{1}{a}+\frac{9}{b}+\frac{25}{c}\ge\frac{\left(1+3+5\right)^2}{a+b+c}\Rightarrow3\sqrt{\frac{1}{a}+\frac{9}{b}+\frac{25}{c}}\ge\frac{27}{\sqrt{a+b+c}}\)
Từ đó, suy ra
\(A\ge\frac{2\left(a+b+c\right)}{3}+\frac{27}{\sqrt{a+b+c}}=\frac{a+b+c}{6}+\frac{a+b+c}{2}+\frac{27}{2\sqrt{a+b+c}}+\frac{27}{2\sqrt{a+b+c}}\ge\frac{9}{6}+3\sqrt[3]{\frac{729}{8}}=15\)
Dấu "=" xảy ra khi a=1, b=3, c=5
Mong là không có gì sai sót!
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
- Áp dụng bđt cộng mẫu
Cho \(x_1;x_2;x_3\in R \)
\(\hept{\begin{cases}\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\left(1\right)\\\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2+x_3\right)^2}{\left(y_1+y_2+y_3\right)}\left(2\right)\end{cases}}\)
và \(y_1;y_2;y_3\in R\)
CM : +) \(\left(1\right)\Leftrightarrow\left(y_1+y_2\right)\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\right)\ge\left(x_1+x_2\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2+\frac{y_2}{y_1}x_1^2+\frac{y_1}{y_2}x_2^2\ge x_1^2+x_2^2+2x_1x_2\)
\(\Leftrightarrow\frac{y_2}{y_1}x_1^2+\frac{y_1}{y_2}x_2^2\ge2x_1x_2\)( đúng do Cauchy )
+) Để CM (2) , ta áp dụng liên tiếp 2 lần (1)
(1) (2)
\(VT\left(2\right)\ge\frac{\left(x_1+x_1\right)^2}{y_1+y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)
+) Với cách này ra có thể cm bđt " cộng mẫu " tổng quát sau :
\(\frac{x_1^2}{y_1}+......+\frac{x_1^2}{y_2}\ge\frac{\left(x_1+........+x_n\right)^2}{y_1+...........+y_n}\)
- Áp dụng bđt cộng mẫu , ta có :
\(P=\frac{\sqrt{a}^2}{2\sqrt{b}-5}+\frac{\sqrt{b}^2}{2\sqrt{c}-5}+\frac{\sqrt{c}^2}{2\sqrt{a}-5}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-15}\ge\frac{S^2}{2S-15}\)
( Trong đó \(S=\sqrt{a}+\sqrt{b}+\sqrt{c}>3\frac{5}{2}=\frac{15}{2}\))
- Đặt U = 2S - 15
+) u > 0
+) \(S=\frac{u+15}{2}\)
\(P\ge\frac{1}{4}.\frac{\left(u+15\right)^2}{u}=\frac{1}{4}\left(u+\frac{15^2}{u}+30\right)\)
\(\ge\frac{1}{4}\left(2\sqrt{u.\frac{15^2}{u}}+30\right)\left(Cauchy\right)\)
\(\ge15\)
Ta có: \(a,b,c>\frac{25}{4}\Rightarrow2\sqrt{a}-5>0,2\sqrt{b}-5>0,2\sqrt{c}-5>0\)
Áp dụng BĐT Cô-si cho 2 số dương ta có:
\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\) (1)
\(\frac{b}{2\sqrt{c}-5}+2\sqrt{c}-5\ge2\sqrt{b}\) (2)
\(\frac{a}{2\sqrt{a}-5}+2\sqrt{a}-5\ge2\sqrt{c}\) (3)
Cộng vế theo vế của (1), (2), (3) ta có: \(Q\ge5.3=15\)
Dấu '=' xảy ra <=> a=b=c=25 ( TMĐK)
Vậy Min Q =15 <=> a=b=c=25
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)
ĐKXĐ:\(\hept{\begin{cases}a,b,c\ge0\\a,b,c\ne\frac{25}{4}\end{cases}}\)
\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\left(cosi\right)\)
Làm tương tự rồi cộng 3 vế lại nha bn