K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Câu hỏi của Min - Toán lớp 9 - Học toán với OnlineMath

2 tháng 8 2018

xin link

5 tháng 3 2018

đăng câu hỏi linh tinh

5 tháng 3 2018

mình có nick sv1 nè lấy o

tk:mnmn@vk.ck

mt:aaaa hoặc cccc

13 tháng 2 2022

giúp mình bài này với ah.

14 tháng 2 2022

cho hỏi có phải bạn đang làm đề amsterdam phải không =)))

DM
31 tháng 1 2018

Từ hai phương trình đầu suy ra a+d = -1, hay d = -1 -a . Thế vào ba phương trình cuối ta được hệ phương trình ba ẩn:

                4a+2b-c =0; 3a - 2b - 3c = 4; 7a + a - 6c = 5.

Giải hệ này (chẳng hạn sử dụng máy tính cầm tay CASIO fx - 570 ) ta được 

                \(a=\frac{4}{37};b=-\frac{23}{37};c=-\frac{30}{37}\) suy ra  \(a=-1-\frac{4}{37}=-\frac{41}{37}\)

Từ đó    a + b + c + d = -90/37

1 tháng 8 2017

a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :

\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5

b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :

\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)

Ta có bảng xét dấu :

x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +

=> x \(\le-5\) Hoặc x \(\ge3\)

c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :

x - 3 \(\ge\) 0 <=> x \(\ge3\)

\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4

d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :

\(x-1\ge0< =>x\ge1\)

\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)

e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :

\(\dfrac{-3}{x-5}\ge0\)

Mà -3 < 0 nên => x -5 < 0 <=> x < 5

F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :

\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)

Ta có bảng xét dấu :

x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +

=> x \(\le-3\) Hoặc x \(\ge3\)

g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :

x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1

h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :

( x + 2)(x + 3) \(\ge0\)

Ta có bảng xét dấu :

x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +

=> \(x\le-3\) Hoặc x \(\ge-2\)

1 tháng 8 2017

a )\(\dfrac{\sqrt{3}}{x-5}\)

\(\sqrt{3}\) > 0

<=> x-5 >0

=>x > 5

Bạn ghi đầy đủ đề đi bạn