Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{2x^2+2x+2+2x^2-3x+1+x^2+6x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{5x^2+5x+5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{5}{x-1}\)
b: Để A là số nguyên thì \(x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{2;0;6;-4\right\}\)
e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)
\(\Leftrightarrow x=4k,y=5k\) (1)
Theo bài ra ta có: xy = 80
Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)
+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)
a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)
a) Ta có : \(x - 2xy + y - 3 = 0\)
\(\Rightarrow-2xy+x+y=3\)
\(\Rightarrow-2.\left(-2xy+x+y\right)=-2.3\)
\(\Rightarrow4xy-2x-2y=-6\)
\(\Rightarrow4xy-2x-2y+1=-6+1\)
\(\Rightarrow2x.\left(2y-1\right).\left(2y-1\right)=-5\)
\(\Rightarrow\left(2y-1\right).\left(2x-1\right)=-5=1.\left(-5\right)=-5.1=\left(-1\right).5=5.\left(-1\right)\)
Tự lập bảng đi -.-
Nhân từng vế bất đẳng thức ta được : (xyz)2 = 36xyz + Nếu một trong các số x,y,z bằng 0 thì 2 số còn lại cũng bằng 0 + Nếu cả 3 số x,y,z khác 0 thì chia 2 vế cho xyz ta được xyz = 36 + Từ xyz =36 và xy = z ta được z2 = 36 nên z = 6; z = -6 + Từ xyz =36 và yz = 4x ta được 4x2 = 36 nên x = 3; x = -3 + Từ xyz =36 và ta được 9y2 = 36 nên y = 2; y = -2 - Nếu z = 6 thì x và y cùng dấu nên x = 3, y = 2 hoặc x = -3 , y = -2 - Nếu z = -6 thì x và y trái dấu nên x = 3 ; y = -2 hoặc x = -3; y=2 |
Vậy có 5 bộ số (x, y, z) thoã mãn: (0,0,0); (3,2,6);(-3,-2,6);(3,-2,-6);(-3,2.-6)
Bài 1:
1)
\(\dfrac{3x+2}{4}\) = \(\dfrac{5x-3}{3}\)
<=> 3(3x + 2) = 4(5x - 3)
<=> 9x + 6 = 20x - 12
<=> 6 +12 = 20x - 9x
<=> 11x = 18
<=> x = \(\dfrac{18}{11}\)
Vậy: x = \(\dfrac{18}{11}\)
2)
\(\dfrac{x-1}{3x+2}\)= \(\dfrac{1}{5}\)
<=> 5(x - 1) = 3x + 2
<=> 5x - 5 = 3x + 2
<=> 5x - 3x = 2 +5
<=> 2x = 7
<=> x = \(\dfrac{7}{2}\)
Vậy : x = \(\dfrac{7}{2}\)
Bài 1 :
1) Ta có :
\(\dfrac{3x+2}{4}=\dfrac{5x-3}{3}\\ \Leftrightarrow4\cdot\left(5x-3\right)=3\cdot\left(3x+2\right)\\ \Leftrightarrow20x-12=9x+6\\ \Leftrightarrow20x-18=9x\\ \Leftrightarrow20x-9x=18\\ \Leftrightarrow11x=18\\ \Leftrightarrow x=\dfrac{18}{11}\\ Vậy.,...\)
2) Ta có :
\(\dfrac{x-1}{3x+2}=\dfrac{1}{5}\Leftrightarrow5\cdot\left(x-1\right)=3x+2\\ \Leftrightarrow5x-5=3x+2\\ \Leftrightarrow5x-3x-5=2\\ \Leftrightarrow2x-5=2\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\)
Vậy ....
Bài 2 ;
1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\y=3\cdot4=12\end{matrix}\right.\\ Vậy...\)
2) Ta có : \(3x=5y\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{-16}{2}=-8\\ \Rightarrow\left\{{}\begin{matrix}x=-8\cdot5=-40\\y=-8\cdot3=-24\end{matrix}\right.\\ Vậy....\)
3) Ta có : \(4x=7y\Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x^2}{7^2}=\dfrac{y^2}{4^2}=\dfrac{x\cdot y}{7\cdot4}\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{112}{28}=4\\ \Rightarrow\left\{{}\begin{matrix}x=4\cdot7=28\\y=4\cdot4=16\end{matrix}\right.\\ Vậy...\)
a: \(\dfrac{3-x}{2}+y=1\)
=>3-x+2y=2
=>-x+2y=-1(1)
\(\dfrac{2-y}{3}+x=2\)
=>2-y+3x=6
=>3x-y=4(2)
Từ (1) và (2) suy ra x=7/5; y=1/5
b: \(\dfrac{x}{2}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>3x-2y=1(3)
x-y/3=4
=>x-y=12(4)
Từ (3) và (4) suy ra x=-23; y=-35
c: \(\dfrac{x-2}{3}=y\)
=>x-2=3y
=>x-3y=2(5)
\(\dfrac{x-y}{2}=\dfrac{x}{2}\)
=>x-y=x
=>y=0
Thay y=0 vào x-3y=2, ta đc:
\(x-3\cdot0=2\)
=>x=2
a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x^3-16x-x^2-1\right]x^2-1\)
\(=x^5-16x^3-x^4-x^2-1\)
b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)
\(=y^2-3y+3y^2+9-y^2+2y^2-4\)
\(=5y^2-3y+5\)
c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)
\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)
d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)
Chúc bạn học tốt!!!
ban dùng tính chất phân phối ko