K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

có 2 câu giống nhau

22 tháng 11 2018

a/ x + ( - 30 ) = 1 - ( - 40 )

=> x - 30 = 1 + 40

=> x - 30 = 41

=> x = 71

b/ | x | - 35 = ( - 4 )

=> | x | = 31

=> \(\orbr{\begin{cases}x=31\\x=-31\end{cases}}\)

c/ | x | - 35 = ( - 4 ) 

=> | x | = 31

=> \(\orbr{\begin{cases}x=31\\x=-31\end{cases}}\)

d/ | x | + ( -12 ) = -1

=> | x | = 11

=> \(\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)

e/ | x | + ( - 22 ) = - 30

=> | x | =  - 8 

=> x không có giá trị vì | x | \(\ge\)0

f/ | x - 1 | = | - 4 |

=> | x - 1 | = 4

=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

26 tháng 11 2018

a)-x=-5=>x=5

b)x=-16

c)x=4

26 tháng 11 2018

a, \(|-x|=-1+\left(-4\right)\)

<=>\(|-x|=-5\) (vô lý)

vậy pt vô nghiệm 

b, \(|x+22|=6\)

<=>\(\orbr{\begin{cases}x+22=6\\x+22=-6\end{cases}}\) <=>\(\orbr{\begin{cases}x=-16\\x=-28\end{cases}}\)

c, \(|x-1|=2\) <=>\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\) <=>\(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

14 tháng 8 2019

a, th1 : 2- x +2=x

<=> X=2

Th2: -2 +x +2= x

<=> X có vô sốnghiệm

14 tháng 8 2019

B1: a, |2 - x| + 2 = x

=> |2 - x| = x - 2

Dễ thấy (2 - x) và số đối của (x - 2)

=> |2 - x| = x - 2

=> 2 - x ≤ 0

=> x  ≥ 2

b, Điều kiện: x + 7 ≥ 0 => x  ≥ -7

Ta có: |x - 9| = x + 7

\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)

13 tháng 8 2019

Trả lời

Mk nghĩ bạn có thể tham khảo ở CHTT nha !

Có đáp án của câu b;c và d đó.

Đừng ném đá chọi gạch nha !

a) vi(x^2+5)(x^2-25)=0

=>x^2+5=0 hoac x^2-25=0

=>x=...hoac x=...(tu lam)

b)(x-2)(x+1)=0

=>x-2=0 hoac x+1=0

=>x=2 hoac x=-1

c)(x^2+7)(x^2-49)<0

=>x^2+7va x^2-49 trai dau

ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7

con lai tuong tu

tu lam nhe nho k nha

28 tháng 7 2018

a)  \(\left|x+\frac{1}{2}\right|=\frac{1}{3}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{3}\\x+\frac{1}{2}=-\frac{1}{3}\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{6}\end{cases}}\)

Vậy....

b)  \(\left|x-\frac{1}{2}\right|=\frac{1}{3}-\frac{1}{2}\)

\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=-\frac{1}{6}\)   vô lí do \(\left|a\right|\ge0\)

Vậy pt vô nghiệm

c)  \(\left|x+\frac{1}{3}\right|-4=-1\)

\(\Leftrightarrow\)\(\left|x+\frac{1}{3}\right|=3\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+\frac{1}{3}=3\\x+\frac{1}{3}=-3\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}}\)

Vậy..

28 tháng 7 2018

d)  \(\left|x-\frac{1}{5}\right|+\frac{1}{3}=\frac{1}{4}-\left|-\frac{3}{2}\right|\)

\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|+\frac{1}{3}=-\frac{5}{4}\)

\(\Leftrightarrow\)\(\left|x-\frac{1}{5}\right|=-\frac{19}{12}\)vô lí do  \(\left|a\right|\ge0\)với mọi a

Vậy pt vô nghiệm

e)  \(\left|x-\frac{5}{2}\right|=\frac{4}{3}-\left(\frac{2}{3}-\frac{1}{2}\right)\)

\(\Leftrightarrow\)\(\left|x-\frac{5}{2}\right|=\frac{7}{6}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{5}{2}=\frac{7}{6}\\x-\frac{5}{2}=-\frac{7}{6}\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\frac{2}{3}\\x=\frac{4}{3}\end{cases}}\)

Vậy...

\(a)x+30\%x=-1,31\)

\(\Leftrightarrow x+\frac{3x}{10}=-1,31\)

\(\Leftrightarrow10x+3x=-13,1\)

\(\Leftrightarrow13x=-13,1\Leftrightarrow x=-\frac{131}{130}\)

\(b)\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)

\(\Leftrightarrow\frac{2x-1}{2}.3+\frac{5}{7}=\frac{68}{7}\)

\(\Leftrightarrow\frac{6x-3}{2}=\frac{63}{7}\)

\(\Leftrightarrow\frac{6x-3}{2}=9\)

\(\Leftrightarrow6x-3=18\)

\(\Leftrightarrow x=\frac{7}{2}\)

5 tháng 7 2018

1. a) 5–4x+1=20160

5–4x+1=1

5–4x+1=1

4x+1=5–1

4x+1=4

4x.4=4

4x=4:4

4x=1

Vì 40=1

Nên x=0

b) 2x+1.22016=22017

2x+1=22017:22016

2x+1=22017–2016

2x+1=2

2x.2=2

2x=2:2

2x=1

Vì 20=1

Nên x=0

2.

a) | x2–19 | =6

==> x2–19=6 hoặc x2–19=-6

==> x2=6+19 hoặc x2=—6+19

==> x2=25 hoặc x2=13

Ta có x2=13

==> không tìm được giá trị x

Ta có :52=25 

Nên x=5

c) (x+1).(x2–4)=0

==> x+1 =0 hoặc x2–4=0

==> x=0–1 hoặc x2=0+4

==> x=-1 hoặc x2=4

Mà x2=22

==> x=2

Vậy x=—1 hoặc x=2

d) x15=x

Mình chỉ biết là x=0 hoặc x=1 thôi,cách giải mình quên rồi, xl nha

e) 5 chia hết cho x+1

==> x+1 € Ư(5)

==>x+1€{1;—1;5;—5}

Ta có

TH1: x+1=1

x=1–1

x=0

TH2: x+1=—1

x=—1–1

x=—2

TH3: x+1=5

x= 5–1

x=4

TH4: x+1=—5

x=—5 —1 

x=—6 

Vậy x€{0; —2;4;—6}

Nếu bạn chưa học số âm thì không cần viết vào đâu nha, bỏ luôn trường hợp 2 và 4 đi 

\(a,\left(x+3\right)\left(y+2\right)=1\)

=> x+3 và y+2 thuộc UC(1)={1; -1}

x+31-1
x-2-4
y+21-1
y-1-3

Vậy x=-2; y=-4

       x=-1; y=-4

Câu sau tương tự

13 tháng 8 2019

\(a,\left(x+3\right)\left(y+2\right)=1\)

Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)

\(d,3x+4y-xy=16\)

\(=3x-xy+4y-12=4\)

\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)

\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)

Chia các trường hợp như câu a của chị ra em nhé

12 tháng 7 2017

a) (x-1)+(x-2)+(x-3)+...+(-100)=101

(x+x+x+...+x)-(1+2+3+...+100)=101

=> 100x-5050=101

100x=101+5050

100x=5151

x=5151:100

x=5151/100

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

1.

Do: $(x-3y)^2\geq 0; (2x-1)^4\geq 0$ với mọi $x,y\in\mathbb{R}$

$\Rightarrow A\geq 0+0+3=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $x-3y=2x-1=0$

$\Leftrightarrow x=\frac{1}{2}; y=\frac{1}{6}$

2.

$|x-2|\geq 0$

$|3x-2y|\geq 0$

$\Rightarrow B\geq 0+0-4=-4$

Vậy $B_{\min}=-4$

Giá trị này đạt tại $x-2=3x-2y=0\Leftrightarrow x=2; y=3$

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

3.

$|x+1|\geq 0, \forall x\in\mathbb{R}$

$|y-3|\geq 0, \forall y\in\mathbb{R}$

$\Rightarrow |x+1|+|y-3|+2\geq 2$

$\Rightarrow \frac{1}{|x+1|+|y-3|+2}\leq \frac{1}{2}$

$\Rightarrow C\geq \frac{-4}{2}=-2$

Vậy $C_{\min}=-2$. Giá trị này đạt tại $x+1=y-3=0$

$\Leftrightarrow x=-1; y=3$

4. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-5|+|x-1|=|5-x|+|x-1|\geq |5-x+x-1|=4$

$\Rightarrow D=|x-5|+|x-1|+7\geq 11$

Vậy $D_{\min}=11$. Giá trị này đạt tại $(5-x)(x-1)\geq 0$

$\Leftrightarrow 5\geq x\geq 1$