Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
a/ \(\Leftrightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b/ \(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
c/ \(\Leftrightarrow24x^2+7x-6-4x^2-9x+28=10x^2+3x-1-33\)
\(\Leftrightarrow10x^2-5x+56=0\)
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
a/ ⇔2x2−5x−12+x2−7x+10=3x2−17x+20⇔2x2−5x−12+x2−7x+10=3x2−17x+20
⇔5x=22⇔5x=22
⇒x=225⇒x=225
b/ ⇔−5x2−2x+16+4x2−4x−8+2x2−8=0⇔−5x2−2x+16+4x2−4x−8+2x2−8=0
⇔x2−6x=0⇔x2−6x=0
⇔x(x−6)=0⇒[x=0x=6⇔x(x−6)=0⇒[x=0x=6
c/ ⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33⇔24x2+7x−6−4x2−9x+28=10x2+3x−1−33
⇔10x2−5x+56=0⇔10x2−5x+56=0
Phương trình vô nghiệm (chắc do bạn ghi sai đề)
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 0
<=> x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 0
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> (2x + 3)(x - 4) + (x - 5)(x - 2) - (3x - 5)(x - 4) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - (3x2 - 12x - 5x + 20) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - 3x2 + 12x + 5x - 20 = 0
<=> 5x = 12 - 10 + 20
<=> 5x = 22
<=> x = 22/5
c) (8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
<=> 8x + 16 - 5x2 - 10x + (4x - 8)(x + 1) + 2(x2 - 4) = 0
<=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x(x - 6) = 0
<=> x = 0 hay x - 6 = 0
I<=> x = 6
d) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
<=> 24x2 + 16x - 9x - 6 - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
<=> 24x2 + 16x - 9x - 6 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
<=> 10x2 - 19x = 0
<=> x(10x - 19) = 0
<=> x = 0 hay 10x - 19 = 0
I <=> 10x = 19
I <=> x = 19/10