Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)
=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}+\frac{1}{94}-\frac{1}{97}\)(giản ước các phân số giống nhau)
=\(\frac{1}{1}-\frac{1}{97}\)
=\(\frac{96}{97}\)
a) gọi \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.11}+...+\frac{2}{94.97}\)
\(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}\)
\(\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)(rút gọn các phân số giống nhau)
\(\frac{3}{2}A=\frac{1}{1}-\frac{1}{97}\)
\(\frac{3}{2}A=\frac{96}{97}\left(1\right)\)
từ \(\left(1\right)\Leftrightarrow A=\frac{96}{97}\div\frac{3}{2}=\frac{64}{97}\)
b)\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{2011}\right)\)
\(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}......\frac{2010}{2011}\)
\(=\frac{6.7.8.9.....2010}{7.8.9......2011}\)(rút gọn các số giống nhau)
\(=\frac{6}{2011}\)
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)
b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
Bài nhìn vô muốn xỉu rồi ='((
1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)
\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)
b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần
2 )
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)
\(\Rightarrow x=4020\)
b) A=1/2.3+1/3.4+....+1/99.100
=> A=1/2-1/3+1/3-1/4+....+1/99-1/100
=> A=1/2-1/100
=> A=50/100-1/100
=> A=49/100
a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)
\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)
\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(\frac{100}{101}\)
\(2x-\left(21.3.105.61\right)=\left(-11\right).26\)
\(2x-403515=-286\)
\(2x=\left(-286\right)+403515\)
\(2x=403229\)
\(x=403229:2\)
\(x=\frac{403229}{2}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{91.94}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{94}\)
\(=\frac{1}{1}+\left(\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{91}-\frac{1}{91}\right)-\frac{1}{94}\)
\(=\frac{1}{1}-\frac{1}{94}\)
\(=\frac{93}{94}\)
Ta có : \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{89}{270}\)
\(\Rightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{n\left(n+3\right)}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}=\frac{267}{270}\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{267}{270}\)
=> \(\frac{1}{n+3}=\frac{1}{90}\)
=> n + 3 = 90
=> n = 87
Nhân cả 2 vế với 3 ta được:
\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}=\frac{89}{90}.\)
Vậy tử số của các phân số trên đã bằng hiệu của 2 thừa số ở mẫu số.(Ngoại trừ P/S\(\frac{89}{90}.\))
=> ta được:
\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{n}-\frac{1}{n+3}=\frac{89}{90}.\)
Rút gọn hết ta được :
\(1-\frac{1}{n+3}=\frac{89}{90}\)
\(\frac{1}{n+3}=1-\frac{89}{90}\)
\(\frac{1}{n+3}=\frac{1}{90}.\)
Vì 1=1 => n+3=90
n = 90-3
n=87
Vậy n=87.
Đ/S:87
c)1*(1/2-1/3+1/3-1/4+.....+1/91-1/94)
1/2-1/94 ban tu tinh nhe
d)1*(1/1-1/4+1/4-1/7+......+1/91-1/94)
1-1/94 ban tu tinh nhe
tk nha
a) \(\frac{1}{n}-\frac{1}{n+1}\left(n\inℕ^∗\right)\)
\(\Leftrightarrow\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\Leftrightarrow\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)
b) \(\frac{1}{n}-\frac{1}{n+3}\left(n\inℕ^∗\right)\)
\(\Leftrightarrow\frac{n+3}{n\left(n+3\right)}-\frac{n}{n\left(n+3\right)}=\frac{n+3-n}{n\left(n+3\right)}=\frac{3}{n\left(n+3\right)}\)
c,d dễ bn tách ra rồi trừ đi