K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2015

a)Ta có:
​A= 1/15+1/35+1/63+1/99+1/143
A= 1/3.5+1/5.7+1/7.9+1/9.11+1/11.13
2A= 2/3.5+2/5.7+2/7.9+2/9.11+2/11.13
2A= 1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13
Đơn giản đi ta được:
2A= 1/3-1/13
2A= 10/39
A= 5/39
Vậy A= 5/39   

5 tháng 1 2016

b) Để A và B có giá trị bằng nhau thì:
\(\frac{3}{4}\cdot x+7=\frac{4}{3}\cdot x-35\)
\(7+35=\frac{4}{3}\cdot x-\frac{3}{4}\cdot x\)
\(42=\frac{7}{12}\cdot x\)
\(x=42:\frac{7}{12}\)
\(x=72\)

25 tháng 7 2018

a) ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 ) 

vì  ( 125125 x 127 - 127127 x 125 ) =[125125 x (125+2)] - 127127 x 125 ) =>125125 x (125+2)=125.125125+125125.2=125125.125+250250=125125.125+125.2002=125.(125125+2002)=125.127127

=> ( 125125 x 127 - 127127 x 125 )=127127.125-127127.125=0

=>  (1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 ) =0

25 tháng 7 2018

a) ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 ) x ( 125125 x 127 - 127127 x 125 ) 

= ( 1 + 3 + 5 + 7 + ....... + 2007 + 2009 + 2011 )  x 0

= 0

b, \(\frac{1}{3}\)\(\frac{1}{15}\)\(\frac{1}{35}\)\(\frac{1}{63}\)\(\frac{1}{99}\)\(\frac{1}{143}\)\(\frac{1}{195}\)

\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{5}\)\(\frac{1}{5}\)\(\frac{1}{7}\)+\(\frac{1}{7}\)\(\frac{1}{9}\)+...........+\(\frac{1}{13}\)\(\frac{1}{15}\)

\(\frac{1}{3}\)\(\frac{1}{15}\)

\(\frac{4}{15}\)

14 tháng 7 2018

câu 2:

= 6/13

14 tháng 7 2018

Các bạn nêu rõ cách làm từng bài giúp mình nhé! Thanks ^-^!

18 tháng 8 2017

<=> \(\left(\frac{1}{3\cdot5}+\frac{1}{5.7}+...+\frac{1}{13\cdot15}\right)+x=\frac{17}{15}\)

<=> \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=>\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)+x=\frac{17}{15}\)

<=> \(\frac{2}{15}+x=\frac{17}{15}\)

=> x = 1

18 tháng 8 2017

(1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)+x=17/15

[2.(1/3-1/5+1/5-1/7+...+1/13-1/15)]+x=17/15

[2.(1/3-1/15)]+x=17/15

(2.4/15)+x=17/15

6/15+x=17/15

x=17/15-6/15

x=11/15

1 tháng 7 2017

2/ 

a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)

\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)

\(=1-\frac{1}{21}=\frac{20}{21}\)

b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)

\(=\frac{1}{2017}\)

c) \(A=2000-5-5-5-..-5\)(có 200 số 5) 

\(A=2000-\left(5\cdot200\right)\)

\(A=2000-1000\)

\(A=1000\)

22 tháng 6 2017

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)

\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)

\(=\frac{13}{2}\cdot\frac{8}{33}\)

\(=\frac{52}{33}\)

22 tháng 6 2017

a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99

A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)

A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)

A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)

A= 13/2 ( 1/3 - 1/11) 

A= 13/2 . 8/33

A= 52/33  

a,Đặt  \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)

 \(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)

\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)

\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{300}\)

b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)

c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\)           (dấu . là dấu nhân)

1 tháng 6 2018

Dấu \(.\)là dấu nhân 

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{2}.\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\frac{14}{15}\)

\(=\frac{7}{15}\)

~ Ủng hộ nhé 

Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)

Suy ra ; \(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}=\frac{14}{15}\)

=> A = \(\frac{14}{15}:2=\frac{14}{15}.\frac{1}{2}=\frac{7}{15}\)