Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{8-15}{10^{2014}}+\frac{-15}{10^{2015}}=\frac{8}{10^{2014}}-15.\left(\frac{1}{10^{2014}}+\frac{1}{10^{2015}}\right)\)
B=\(\frac{-15}{10^{2014}}+\frac{8-15}{10^{2015}}=\frac{8}{10^{2015}}-15.\left(\frac{1}{10^{2014}}+\frac{1}{10^{2015}}\right)\)
Nhận xét: \(\frac{8}{10^{2015}}<\frac{8}{10^{2014}}\Rightarrow\frac{8}{10^{2015}}-15.\left(\frac{1}{10^{2014}}+\frac{1}{10^{2015}}\right)<\frac{8}{10^{2014}}-15.\left(\frac{1}{10^{2014}}+\frac{1}{10^{2015}}\right)\)
=> B < A
\(A=\frac{-7}{10^{2012}}+\frac{-15}{10^{2013}}=\frac{-15+8}{10^{2012}}+\frac{-15}{10^{2013}}=\frac{-15}{10^{2012}}+\frac{-15}{10^{2013}}+\frac{8}{10 ^{2012}}\);
\(B=\frac{-15}{10^{2012}}+\frac{-7}{10^{2013}}=\frac{-15}{10^{2012}}+\frac{-15+8}{10^{2013}}=\frac{-15}{10^{2012}}+\frac{-15}{10^{2013}}+\frac{8}{10^{2013}}\);
mà \(\frac{8}{10^{2012}}>\frac{8}{10^{2013}}\Rightarrow A>B\)
\(a)\) Ta có :
\(\overline{34x5y}\) chia hết cho 4 và 9
* Chia hết cho 4 : số có 2 chữ số tận cùng chia hết cho 4 thì chia hết cho 4
\(\Rightarrow\)\(\overline{5y}=52\) hoặc \(\overline{5y}=56\)
Chia hết cho 9 : số có tổng các chữ số chia hết cho 9 thì chia hết cho 9
\(\Rightarrow\)\(3+4+x+5+2\) chia hết cho 9 \(\Rightarrow\)\(14+x\) chia hết cho 9 \(\Rightarrow\)\(x=4\)
Hoặc :
\(\Rightarrow\)\(3+4+x+5+6\) chia hết cho 9 \(\Rightarrow\)\(18+x\) chia hết cho 9 \(\Rightarrow\)\(x=0\) hoặc \(x=9\)
Vậy \(\left(x,y\right)=\left\{\left(4;2\right),\left(0;6\right),\left(9;6\right)\right\}\)
Chúc bạn học tốt ~