Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7.k ⋮ 7 với mọi số tự nhiên k.
7.k là số nguyên tố khi 7.k chỉ chia hết cho 1 và chính nó tức là 7.k = 7 hay k = 1.
Thử lại 7.1 = 7 là số nguyên tố.
Vì số nguyên tố có ước là 1 và chính nó
→ Một số nguyên tố = chính nó nhân 1
Mà 3 và 7 đều là số nguyên tố → k = 1
Vậy, .................
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
a) Ta có : 3 là số nguyên tố
Để : 3k không là số nguyên tố\(\left(k\inℕ\right)\)\(\Rightarrow k\ne1\left(k\ge0\right)\)
b) Ta có : 7 là số nguyên tố
Để : 7k không là số nguyên tố (\(k\inℕ\))\(\Rightarrow k\ne1\left(k\ge0\right)\)
121. SGK
a ) tìm số tự nhiên k để 3 . k là số nguyên tố
b ) Tìm số tự nhiên k để 7 . k là số nguyên tố
a) Vì 3 là số nguyên tố nên để 3k là nguyên tố thì k = 1.
b) Vì 7 là số nguyên tố nên để 7k là nguyên tố thì k = 1.
Ta có: số nguyên tố thì chỉ có ước là 1 và chính số đó nên:
a) để 3k(k thuộc N ) là số nguyên tố thì k=1
b)để 7k(k thuộc N) là số nguyên tố thì k=1
a)3k là số nguyên tố
=>3k chỉ có 2 ước là 1 và chính nó
3k có 1 ước là k.Mà k<3k =>k=1
b)7k là số nguyên tố
=>7k chỉ có 2 ước là 1 và chính nó
7k có 1 ước là k. Mà k<7k =>k=1
a) Giả sử : k>2 thì 3k >3 và chia hết cho 3
khi đó 3k là hợp số
=>0<k<2
=>k=1
b) Giả sử : k>2 thì 7k >7 và chia hết cho 7
khi đó 7k là hợp số
=>0<k<2
=>k=1
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
a) k = 1
b) k = 1
+để 3k là số nguyên tố thì k = 1
+để 7k là số nguyên tố thì k=1