K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)

 \(\begin{array}{l}x + 5 =  - 3\\x =  - 3 - 5\\x =  - 8.\end{array}\)

Vậy x=-8.

b) Quy tắc: Muốn tìm một số hạng của tổng hai số khi biết tổng và số hạng còn lại, ta lấy tổng trừ đi số hạng kia.

28 tháng 6 2019

Đặt số chia là p (p là số nguyên tố, \(11\le p< 100\)). Suy ra ba số hạng trong ngoặc sẽ là pmn, pm, pn, với (m,n)=1.

Mặt khác, do các số phải tìm là khác nhau nên \(mn\ge6.\)Từ đó, ta có:

\(p< \frac{100}{6}< 17\Rightarrow p=1;13\)

Ta có, thương của phép tính đã cho luôn là m + n + mn, do vậy xét hai trường hợp:

Trường hợp 1: Với p = 11, ta có:

\(6\le mn< 10\Rightarrow mn=6\Rightarrow m+n+mn=11\)

Không thỏa mãn do \(p\ne m+n+mn.\)

Trường hợp 2:Với p = 13, ta có:

\(6\le mn< 8\Rightarrow mn=6\Rightarrow m+n+mn=11\)

Vậy năm số phải tìm là 78,39,26,13,11.

Ta được dãy tính như sau (73 + 39 + 26):13 = 11

20 tháng 5 2019

\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)

\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)

\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)

\(=4+3^2\cdot40+....+3^{2014}\cdot40\)

\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.

20 tháng 5 2019

\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)

\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)

\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)

\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)

\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

18 tháng 11 2017

Bn xem lại đề bài  đi .Có j đó sai sai

18 tháng 11 2017

Xin lỗi mình viết nhầm đề:

Sô 184 được viết thành tổng của 3 số sao cho số hạng thứ nhất và số hạng thứ hai tỉ lệ thuận với 3 và 2. Số hạng thứ hai và số hạng thứ ba tỉ lệ thuận với 5 và 7. Tìm 3 số hạng

22 tháng 11 2016

ko hieu noi " so nguyen b khong am nho hon 1" => khong ton tai b

22 tháng 11 2016

lưu ý: Số nguyên a trong ví dụ trên là số nguyên lớn nhất ko vượt quá x. Ta gọi a là phần nguyên của x, kí hiệu là [ x ]. Số ko âm b nói trên gọi là phần lẻ của x, kí hiệu là { x }

1.1 Số hữu tỉ là số viết được dưới dang phân số a/b với a, b ∈ Z, b ≠ 0.1.2 Cộng, trừ, nhân, chia số hữu tỉ.1.3 Tính chất của dãy tỉ số bằng nhau.(giả thiết các tỉ số đều có nghĩa)1.4 Mối quan hệ giữa số thập phân và số thực:1.5 Một số quy tắc ghi nhớ khi làm bài tậpa) Quy tắc bỏ ngoặc:Bỏ ngoặc trước ngoặc có dấu "-" thì đồng thời đổi dấu tất cả các hạng tử có...
Đọc tiếp

1.1 Số hữu tỉ là số viết được dưới dang phân số a/b với a, b ∈ Z, b ≠ 0.

1.2 Cộng, trừ, nhân, chia số hữu tỉ.

1.3 Tính chất của dãy tỉ số bằng nhau.

(giả thiết các tỉ số đều có nghĩa)

1.4 Mối quan hệ giữa số thập phân và số thực:

1.5 Một số quy tắc ghi nhớ khi làm bài tập

a) Quy tắc bỏ ngoặc:

Bỏ ngoặc trước ngoặc có dấu "-" thì đồng thời đổi dấu tất cả các hạng tử có trong ngoặc, còn trước ngoặc có dấu "+" thì vẫn giữ nguyên dấu các hạng tử trong ngoặc.

b/ Quy tắc chuyển vế: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó.

Với mọi x, y, z ∈ Q: x + y = z => x = z – y

2) Bài tập:

Dạng 1: Thực hiện phép tính

Bài 1: Tính:

Bài 2: Tính 

Bài 3: Thực hiện phép tính bằng cách tính hợp lí:

Bài 4: Tính bằng cách tính hợp lí

Bài 5: Tính 

Dạng 2: Tìm x

Bài 6: Tìm x, biết:

Bài 7: a) Tìm hai số x và y biết: x/3 = y/4 và x + y = 28

b) Tìm hai số x và y biết x : 2 = y : (-5) và x – y = -7

c) x - 1/5)2004 + (y + 0,4)100 + (z - 3)678 = 0

Bài 8: Tìm ba số x, y, z biết rằng: x/2 = y/3, y/4 = z/5 và x + y – z = 10.

Bài 9: Tìm x, biết

đề ôn thi học cuối học kì 1 lớp 7

2
10 tháng 12 2018

tôi đăng viết thế mà mấy cái tìm x,tính các phép ko hiện lên

10 tháng 12 2018

Chả hỉu olm bị làm s lun á

Như thế này bik làm cái gì

5 tháng 2 2016

minh moi hok lop 6

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số...
Đọc tiếp

1)Số cặp ( x;y ) nguyên thỏa mãn (x^2-2)^6+y^4=1 là....

2)Số các phân số a/b thỏa mãn a,b (thuộc) n a/b = 37/40; a+b < 1000 và a+b (thuộc) B(33) là....

3)Số tự nhiên n nhỏ nhất để 1/n+3 ; 2/n+4 ; 3/n+5 ;......; 98/n+100 =

4)Cho tam giac ABC, M là trung điểm của AB. Trên AC lấy điểm N sao cho CN=1/4AC. Diện tích tứ giác BMNC bằng... diện tích tam giác AMN

5)Số tự nhiên nhỏ nhất có 5 chữ số thỏa mãn phân số (2n+7)/(5n+2)

6)Tìm phân số bằng phân số a/ab, biết rằng phân số đó bằng phân số 1/6a.

7)Cho phân số a/b khác 0 tối giản. Biết rằng nếu cộng tử vào tử, cộng tử vào mẫu thì được phân số bằng nửa phân số đã cho. Tính a-b

8) Cho x,y nguyên thỏa mãn 2/(x^2+y^2+3); 3/(x^2+y^2+4);...; 18/(x^2+y^2+19) là các phân số tối giản. Tổng của x^2 và y^2 nhỏ nhất có thể là...

9)Có ... STN n thỏa mãn giá trị phân số (n+10)/(2n-8) nguyên

10)Cho phân số A= (23+22+21+...+13)/(11+10+9+...+1). Có tất cả ... cách xóa một số hạng ở tử và một số hạng ở mẫu của A để được một phân sô mới có giá trị bằng A

1
10 tháng 3 2016

Cau 1 : 2 !nhe bn hien

Bài 1: (1,5 điểm) Tìm xa) 5x = 125;                b) 32x = 81;c) 52x-3 – 2.52 = 52.3;Bài 2: (1,5 điểm)Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5Bài 3: (1,5 điểm)Cho a là một số nguyên. Chứng minh rằng:a. Nếu a dương thì số liền sau a cũng dương.b. Nếu a âm thì số liền trước a cũng âm.c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?Bài...
Đọc tiếp

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

0