\(\in\)Z để \( {n+3 \over 2n-2}\) là số nguyên

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:

\(3x+2⋮x+1\)

Ta có: 3x + 2 = 3(x + 1) - 1

mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1

có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1  hay x + 1 \(\in\)Ư(-1) = {1;-1}

Ta có bảng sau:

x+11-1
x0-2

Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2

b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)

\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)

\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)

\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)

\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(=>1⋮d\) \(=>d=1\)

Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
3 tháng 4 2017

Gọi d là ƯCLN của 2n - 3 ; n - 2 

Khi đó 2n - 3 chia hết cho d , n - 2 chia hết cho d

<=> 2n - 3 chia hết cho d , 2(n - 2) chia hết cho d

<=> 2n - 3 chia hết cho d , 2n - 4 chia hết cho d

<=> 2n - 3 - (2n - 4) chia hêt cho d 

=> 1 chia hết cho d

=> d = 1

Vậy p/s A tối gian 

3 tháng 4 2017

Gọi ƯCLN(2n-3;n-2) là d(dEN).

=>2n-3 chia hết cho d và n-2 chia hết cho d.

=>2n-3 chia hết cho d và 2(n-2) chia hết cho d.

=>2n-3 chia hết cho d và 2n-4 chia hết chp d.

=>2n-3-(2n-4)=1 chia hết cho d.

Mà dEN;d lớn nhất =>d=1.

=>(2n-3;n-2)=1.

=>A tối giản với mọi nEZ;n khác 2.

k nha đúng đó