Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có (3a+2b )+( 2a+3b)=5(a+b) chia hêt cho 5
mà 3a+2b chia hết cho 5 nên 2a+3b chia hết cho 5 (đpcm)
b,Gọi (a,b)=d nên [a,b]=6d nên a=dm,b=dn
(a,b).[a,b]=a.b=d.d.6
a-b=d(m-n)=5 nên 5 chia hết cho d nên d =1 (nếu d = 5 thì loại) nên a.b = 6 nên a=6,b=1
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)
a, Ta có: 7a5b1 \(⋮\)3 => 7 + a + 5 + b + 1 \(⋮\)3
=> 13 + a + b \(⋮\)3
=> a + b chia 3 dư 2 (1)
Mà a - b = 4 nên 4 \(\le\) a \(\le\) 9
0 \(\le\) b \(\le\) 5
Suy ra 4 \(\le\)a + b \(\le\)14 (2)
Mặt khác a - b chẵn nên a + b chẵn (3)
Từ (1);(2) và (3) suy ra a + b \(\in\){8;14}
+) Với a + b = 8 ; a - b = 4 => a = 6, b = 2
+) Với a + b = 14 ; a - b = 4 => a = 9, b = 5
Vậy...
b, Giả sử 10a + b \(⋮\)17
=> 2(10a + b) \(⋮\)17
=> 2(10a + b) - (3a + 2b) \(⋮\)17
=> 20a + 2b - 3a - 2b \(⋮\)17
=> 17a \(⋮\)17 (đúng)
=> Giả sử đúng
Vậy 10a + b \(⋮\)17
Số 7a5b1 đang có tổng là 13
Vì thế:
Dự đoán:
nếu 5 -1 = 4 mà bên kia lại là 19 thì sai
nếu 6 - 2 = 4 thì bên kia lại là 21 là đúng
Vì thế a = 6 và b = 4