Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = |x + 1| + |x - 2009|
=> A = |x + 1| + |2009 - x| \(\ge\)|x + 1 + 2009 - x| = |2010| = 2010
Dấu "=" xảy ra <=> (x + 1)(2009 - x) \(\ge\)0
<=> \(-1\le x\le2009\)
Vậy MinA = 2010 khi \(-1\le x\le2009\)
b) Ta có: 2n - 1 = 2(n - 4) + 7
Do 2(n - 4) \(⋮\)n - 4 => 7 \(⋮\)n - 4
=> n - 4 \(\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng:
n - 4 | 1 | -1 | 7 | -7 |
n | 5 | 3 | 11 | -3 |
Vậy ....
a) Ta có A = |x + 1| + |x - 2009|
= |x + 1| + |2009 - x| \(\ge\left|x+1+2009-x\right|=2010\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1\ge0\\2009-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le2009\end{cases}\Rightarrow1\le x\le2009}\)
b) Để 2n - 1 \(⋮\)n - 4
=> 2n - 8 + 7 \(⋮\)n - 4
=> 2(n - 4) + 7 \(⋮\)n - 4
Vì 2(n - 4) \(⋮\)n - 4
=> 7 \(⋮\)n - 4
=> \(n-4\inƯ\left(7\right)\Rightarrow n-4\in\left\{\pm1;\pm7\right\}\)
Lập bảng xét các trường hợp :
n - 4 | 1 | -1 | 7 | -7 |
n | 5 | 3 | 11 | -3 |
Vậy \(n\in\left\{-3;3;5;11\right\}\)
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: |x - 1004| - |x + 1003| \(\le\) |x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN của A là 2007 khi x = -1013
Ta có: |a| - |b| \(\le\) |a - b|
Do đó: A = |x - 1004| - |x + 1003| \(\le\)|x - 1004 - x - 1003|
\(\le\) 2007
Vậy GTLN A = 2007 khi x = -1013
2.
\(\frac{3n+9}{n-4}\in Z\)
\(\Rightarrow3n+9⋮n-4\)
\(\Rightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)
\(\Rightarrow21⋮n-4\)
\(\Rightarrow n-4\inƯ\left(21\right)\)
\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)
\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)
\(B=\frac{6n+5}{2n-1}\in Z\)
\(\Rightarrow6n+5⋮2n-1\)
\(\Rightarrow6n-3+8⋮2n-1\)
\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)
\(\Rightarrow8⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(8\right)\)
\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
\(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Với mọi x thì A= |x+5/8 | \(\ge\)0 .
Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.
Vậy GTNN (A)= 0 khi x= -5/8.
Ta có:
\(A=\left|x+\frac{5}{8}\right|\ge0\)
Dấu "=" xảy ra khi và chỉ khi x = -5/8
Vậy Min A = 0 khi và chỉ khi x = -5/8
Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),
a) Ta có : \(x-y=3\Rightarrow x=3+y\).
Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)
\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)
\(\ge\left|3-y+y+1\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)
b) Ta có : \(x-y=2\Rightarrow x=2+y\)
Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)
\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)
\(\ge\left|-2y-5+2y+1\right|=4\)
Các câu khác tương tự nhé em !