K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a) Để biểu thức được xác định thì \(\left\{{}\begin{matrix}x+2\ge0\\5-x\le0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\)\(\Leftrightarrow-2\le x\le5\)

Vậy điều kiện xác định của biểu thức là \(-2\le x\le5\)

b) \(\sqrt{4x^2-16x+16}=6\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.4+4^2}=6\Leftrightarrow\sqrt{\left(2x-4\right)^2}=6\Leftrightarrow\left|2x-4\right|=6\Leftrightarrow\left|x-2\right|=3\)(1)

TH1: x\(\ge2\) thì (1)\(\Leftrightarrow x-2=3\Leftrightarrow x=5\left(tm\right)\)

TH2: \(x< 2\Leftrightarrow2-x=3\Leftrightarrow x=-1\left(tm\right)\)

Vậy S={-1;5}

10 tháng 5 2019

may tinh toi khong ra ket qua cho ban duoc

10 tháng 5 2019

ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)

<=> \(x\ne-2\)và \(x\ne5\)

b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)

Với \(x-2>0\)<=> \(x>2\)

=> \(|x-2|=x-2\)

Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)

Với \(x-2< 0\)<=> \(x< 2\)

=> \(|x-2|=-\left(x-2\right)=2-x\)

Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)

Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)

NV
10 tháng 5 2019

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-2\\x\le5\end{matrix}\right.\) \(\Rightarrow-2\le x\le5\)

b/ \(\sqrt{4x^2-16x+16}=6\)

\(\Leftrightarrow\sqrt{\left(2x-4\right)^2}=6\)

\(\Leftrightarrow\left|2x-4\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-4=6\\2x-4=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

2 tháng 9 2019

AI GIẢI HỘ MÌNH K CHO Ạ!!!

13 tháng 9 2019

1)  a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)

b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)

Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)

Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)

Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)

Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)

c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)

\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)

\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)

NV
20 tháng 5 2019

\(M=2\sqrt{3^2.3}-6\frac{\sqrt{2^2.3}}{3}+\frac{3}{5}\sqrt{5^2.3}\)

\(M=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)

\(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{x-1}.\frac{\left|x-1\right|}{2x}=\frac{-2\left(x-1\right)}{\left(x-1\right).2x}=-\frac{1}{x}\)

1 tháng 5 2019

khocroiAnh hai nhanh tay hơn em nghĩ đó. Em làm xong rùi, chụp ảnh đang định gửi lên thì thấy tên anh đập ngay vào mắt. Haiz, thất vọng não nề!!