Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 2)2 = 81
=> (x + 2)2 = 92
=> \(\orbr{\begin{cases}x+2=-9\\x+2=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-11\\x=7\end{cases}}\)
b) 5x + 5x + 2 = 650
=> 5x + 5x . 52 = 650
=> 5x + 5x . 25 = 650
=> 5x (25 + 1) = 650
=> 5x . 26 = 650
=> 5x = 650 : 26
=> 5x = 25
=> 5x = 52
=> x = 2
d) (2x - 1)2 - 5 = 20
=> (2x - 1)2 = 25
=> (2x - 1)2 = 52
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
g) (x - 1)3 = (x - 1)
=> (x - 1)3 - (x - 1) = 0
=> (x - 1) .[(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x-1=\pm1\end{cases}}}\)
Nếu x - 1 = 1
=> x = 2
Nếu x - 1 = -1
=> x = 0
Vậy \(x\in\left\{0;1;2\right\}\)
P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 ) - (x3 + 1 )
= x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1
= -3
\(\Rightarrow\)P ko phụ thuộc vào giá trị của x
#mã mã#
câu 1
a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)
b) \(B=x^2y^3-3xy+4\)
khi x = -1 và y = 2
\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)
\(\Leftrightarrow B=1.8-\left(-6\right)+4\)
\(\Leftrightarrow B=14+4=18\)
c) nhân phần biến với biến hệ với hệ thì ra thôi
Câu 1 a) |x - 2| + 4 = 6
=> |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy x \(\in\left\{4;0\right\}\)
b) Thay x = -1 ; y = 2 vào B ta có :
B = (-1)2.23 - 3.(-1).2 + 4
= 8 + 6 + 4 = 18
c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)
Hệ số : 12
Bậc của đơn thức : 15
Phần biến x8y7
2) a) f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)
= 4x3 - 2x2 + 2x + 6
Bậc của f(x) - g(x) là 3
b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1
= 2x + 4
Lại có f(x) + g(x) = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
Vậy x = -2
a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)
b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\); \(\left|y+4\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5
2.
a) Vì \(\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|\ge0\forall x\in R\\ \Rightarrow3\left|2x+1\right|-4\ge-4\forall x\in R\\ \Rightarrow A\ge-4\forall x\in R\)
Vậy GTNN của A là -4 đạt được khi \(x=-\dfrac{1}{2}\)
Mai mk phải nộp rồi ! Các bn ơi giúp mk với! Help Me ! Thank you !
a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)
Vậy nghiệm của M( x ) là \(\frac{1}{4}\)
b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH
TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)
TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)
c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH
TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)
\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)
a) Đầu bài có đúng ko ?
b) \(B=|x-1|+|x-2|\)
\(=|x-1|+|2-x|\ge|x-1+2-x|\)
Hay \(B\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1< 0\\2-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le2\end{cases}}\)hoặc \(\hept{\begin{cases}x< 1\\x>2\end{cases}\left(loai\right)}\)
\(\Leftrightarrow1\le x\le2\)
Vậy \(B_{min}=1\Leftrightarrow1\le x\le2\)