Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
Ta có: 202220212+k≤202220212202220212+k≤202220212 (với kklà số tự nhiên bất kì)
Ta có:
A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
≤202220212+202220212+...+202220212=202220212.2021=20222021≤202220212+202220212+...+202220212=202220212.2021=20222021
Ta có: 202220212+k>202220212+2021=20222021.2022=12021202220212+k>202220212+2021=20222021.2022=12021với kktự nhiên, k<2021k<2021)
Suy ra A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021
>12021+12021+...+12021=20212021=1>12021+12021+...+12021=20212021=1
Suy ra 1<A≤202220211<A≤20222021do đó AAkhông phải là số tự nhiên.
Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì)
Ta có:
\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)
Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\))
Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)
\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)
Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên.
\(T=\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow2T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\)
\(\Leftrightarrow2T-T=\left(1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}\right)-\left(\dfrac{1}{2^1}+\dfrac{2}{2^2}+...+\dfrac{2021}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)
\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{3}{2^2}...+\dfrac{2020}{2^{2019}}+\dfrac{2021}{2^{2020}}+\dfrac{2022}{2^{2021}}-\dfrac{1}{2^1}-\dfrac{2}{2^2}-...-\dfrac{2021}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
Đặt \(M=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\)
\(\Leftrightarrow2M=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\)
\(\Leftrightarrow2M-M=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2021}}\right)\)
\(\Leftrightarrow M=1-\dfrac{1}{2^{2021}}\)
Khi đó: \(T=1+M-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=1+1-\dfrac{1}{2^{2021}}-\dfrac{2022}{2^{2022}}\)
\(\Leftrightarrow T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)\)
\(Do\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)>0\) \(nên\) \(suy\) \(ra\) \(T=2-\left(\dfrac{1}{2^{2021}}+\dfrac{2022}{2^{2022}}\right)< 2\)
Vậy \(T< 2\) (\(ĐPCM\))
Ta có thể viết lại M dưới dạng:
M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)
= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]
= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)
= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)
Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có
1/n³ > 1/(n+1)³
Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,
1/2³ > 1/3³
1/3³ > 1/4³
…
1/2022³ > 1/2023³
Vậy ta có
M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³
Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.
Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:
S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³
Với mọi số nguyên dương n, ta có:
1/n³ < 1/n(n-1)
Do đó,
1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...
1/2023³ < 1/(2023x2024)
Tổng các số hạng bên phải có thể được viết lại dưới dạng:
1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1
Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.
A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\)
Gọi ước chung lớn nhất của
22021 + 32021 và 22022+32022 là d (d\(\in\)N*)
Ta có : \(\left\{{}\begin{matrix}2^{2021}+3^{2021}⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2.(2^{2021}+3^{2021})⋮d\\2^{2022}+3^{2022}⋮d\end{matrix}\right.\)
Trừ vế với vế ta được 32022 - 2.32021 ⋮ d
⇒ 32021.( 3 - 2) ⋮ d
⇒ 32021 ⋮ d
⇒ d \(\in\){ 1; 3; 32; 33;........32021)
nếu d \(\in\) { 3; 32; 33;.....32021) thì
⇒ 22021 + 32021 ⋮ 3 ⇒ 22021 ⋮ 3 ( vô lý )
vậy d = 1
Hay phân số A = \(\dfrac{2^{2021}+3^{2021}}{2^{2022}+3^{2022}}\) là phân số tối giản (đpcm)