\(\dfrac{12n+1}{30n+2}\) là phân số tối giản.
b, Chứng minh rằng: ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

a) Gọi ƯCLN(12n+1,30n+2) là d

12n+1⋮d  ⇒ 60n+5⋮d 

30n+2⋮d  ⇒ 60n+4⋮d 

(60n+5)-(60n+4)⋮d 

1⋮d 

Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản

27 tháng 7 2021

b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)

23 tháng 5 2017

Gọi ƯCLN (12n+1,30n+2) là d

\(\Rightarrow\left(12n+1\right)⋮d\)

\(\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

Vậy ƯCLN \(\left(12n+1,30n+2\right)=1\Leftrightarrow\dfrac{12n+1}{30n+2}\) là p/s tối giản \(\left(dpcm\right)\)

23 tháng 5 2017

Gọi ước chung lớn nhất của 12n+1 và 30n+ 2 là d

\(\Rightarrow\) ( 12n+1) \(⋮\) d và ( 30n+2 ) \(⋮\) d

\(\Rightarrow\) \(\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

\(\Leftrightarrow\) ( 60n + 5 - 60n - 4 ) \(⋮d\)

\(\Leftrightarrow\) 1 \(⋮\) d hay d= 1

Vậy ước chung lớn nhất của 12n+ 1 và 30n+2 là 1 hay \(\dfrac{12n+1}{30n+2}\) là phân số tối giản .

2 tháng 6 2017

Gọi d là ƯCLN(12n+1;30n+2)

\(\Rightarrow\)12n+1\(⋮\)d=)5(12n+1)\(⋮\)d=)60n+5 chia hết cho d

30n+2\(⋮\)d=)2(30n+2)\(⋮\)d=)60n+4 chia hết cho d

Vì 60n+5 và 60n+4 \(⋮\)d

Nên (60n+5)-(60n+4)\(⋮\)d

60n+5-60n-4\(⋮\)d

1\(⋮\)d

Vậy phân số\(\dfrac{12n+1}{30n+2}\)tối giản

2 tháng 6 2017

Săn mãi mới dc 1 câu :)

Gọi \(d=ƯCLN\left(12n+1;30n+2\right)=d\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(12n+1;30n+2\right)=1\)

\(\Rightarrow\)Phân số \(\dfrac{12n+1}{30n+2}\) tối giản mới mọi n

9 tháng 5 2017

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

12n+1 chia hết cho d

30n+2 chia hết cho d

\(\Rightarrow\) 60n + 5 chia hết cho d

60 n + 4 chia hết cho d

\(\Rightarrow\) 60n + 5 - ( 60n + 4 ) chia hết cho d

1 chia hết cho d => ucln của 12n + 1 và 30n + 2 = 1 => dpcm

11 tháng 5 2017

Gọi ƯCLN (12.n+1;30.n+2) = a

\(\Leftrightarrow\left\{{}\begin{matrix}12.n+1⋮a\\30.n+2⋮a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\left(12.n+1\right)⋮a\\2.\left(30.n+2\right)⋮a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}60.n+5⋮a\\60.n+4⋮a\end{matrix}\right.\)

\(\Leftrightarrow\left(60.n+5\right)-\left(60.n+4\right)⋮a\)

\(\Leftrightarrow1⋮a\)

\(\Rightarrow a=1\)

\(\Rightarrow\dfrac{12.n+1}{30.n+2}\) là phân số tối giản

16 tháng 3 2018

Gọi d là UCLN(12n + 1 ; 30n + 2)

Ta có :

\(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)

\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)

==> \(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow UCLN\left(12n+1;30n+2\right)=1\)

=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau

Vậy phân số A tối giản với mọi số nguyên n

25 tháng 6 2015

a, Đặt ƯCLN(12n+1 ; 30n + 2) = d

=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d

=> 5.(12n + 1) - 2.(30n + 2) = 60n + 5 - 60n + 4 = 1 chia hết cho d

=> d thuộc Ư(1) <=> d = 1

Do đó suy ra điều phải chứng tỏ

29 tháng 8 2016

a) 

Gọi d là ước chung của tử và mẫu 

=> 12n + 1 chia hết cho d              60n + 5 chia hết cho d 

                                        => 

 30n +2 chia hết cho d                      60n + 4 chia hết cho d 

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 => ( đpcm )

1 tháng 3 2018

Câu a) làm rồi mình làm câu b) nhé 

\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

 Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Giải

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)

\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)

Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)

\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

D< 1 - \(\dfrac{1}{20}\)

D< \(\dfrac{19}{20}\)<1

\(\Rightarrow\)D< 1

Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1

30 tháng 4 2017

A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)

A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)

Ta có :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :

\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)

A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1

A<\(\dfrac{49}{200}< \dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

2 tháng 4 2018

1/2^2=4

1/3^2<1/2.3

.................

1/100^2<1/99.100

A<1/4+1/2.3+...+1/99.100

A<1/4+1/2-1/100

A<1/4<3/4

Vậy A<3/4(dpcm).CHÚC BẠN HỌC TỐT!