Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt (12n+1,30n+2)=d
=>12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d
=>30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d
ta có : 5*(12n+1)-2*(30n+2) chia hết cho d
= 1 chia hết cho d
=> d=1
=>(12n+1,30n+2)=1
=>đpcm
gọi d là ucln(12n+1;30n+2)
ta có : 12n+1 chia hết d
⇒60n + 5⋮d (1)
mà 30n+2⋮ d
⇒60n + 4 ⋮ d (2)
từ (1) và (2) ta có:
⇒60n+5 -(60n+4)⋮d
⇒60n+5-60n-4⋮d
⇒1⋮d⇒d=1
vì ucln(12n+1;30n+2)=1
⇒12n+1/30n+2 là phân số tối giản
vậy 12n+1/30n+2 là phân số tối giản
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
12n+1 chia hết cho d
30n+2 chia hết cho d
\(\Rightarrow\) 60n + 5 chia hết cho d
60 n + 4 chia hết cho d
\(\Rightarrow\) 60n + 5 - ( 60n + 4 ) chia hết cho d
1 chia hết cho d => ucln của 12n + 1 và 30n + 2 = 1 => dpcm
Gọi ƯCLN (12.n+1;30.n+2) = a
\(\Leftrightarrow\left\{{}\begin{matrix}12.n+1⋮a\\30.n+2⋮a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5.\left(12.n+1\right)⋮a\\2.\left(30.n+2\right)⋮a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}60.n+5⋮a\\60.n+4⋮a\end{matrix}\right.\)
\(\Leftrightarrow\left(60.n+5\right)-\left(60.n+4\right)⋮a\)
\(\Leftrightarrow1⋮a\)
\(\Rightarrow a=1\)
\(\Rightarrow\dfrac{12.n+1}{30.n+2}\) là phân số tối giản
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
Mình có cách giải khác này:
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
gọi d là ƯCLN(12n+1;30n+2).theo bài ra ta có
12n+1 chia hết cho d =>60n+5 chia hết cho d
30n+2 chia hết cho d =>60n+4 chia hết cho d
=>60n+5-(60n+4)=1 chia hết cho d =>d=1
=>\(\frac{12n+1}{30n+2}\)là phân số tối giản
=>đpcm
Gọi ƯCLN(12n+1;30n+2)=d
Ta có: 12n+1 chia hết cho d; 30n+2 chia hết cho d
=> 5.(12n+1) - 2.(30n+2) chia hết cho d
=> 60n+5-60n+4 chia hết cho d
=> 1 chia hết cho d
=>d=1
=> ƯCLN(12n+1;30n+2)=1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
Gọi \(\left(12n+1,30n+2\right)=d\left(d\in N\right)\)
\(=>\hept{\begin{cases}12n+1:d\\30n+2:d\end{cases}}=>\hept{\begin{cases}5\left(12n+1\right):d\\2\left(30n+2\right):d\end{cases}}=>\hept{\begin{cases}60n+5:d\\60n+4:d\end{cases}}\)
\(=>\left(60n+5\right)-\left(60n+4\right):d\)
\(=>1:d\)
Hay d thuộc Ư(1) mà d là lớn nhất nên d = 1 hay\(\left(12n+1,30n+2\right)=1\)
=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau
=>\(\frac{12n+1}{30n+2}\)là p/s tối giản (Điều phải chứng tỏ)
Ủng hộ mk nha!!
\(\frac{12n+1}{30n+2}\)
Gọi số nguyên tố \(d\inƯC\left(12n+1;30n+2\right)\)
\(\Rightarrow12n+1⋮d\); \(30n+2⋮d\)
\(\Rightarrow12n+1-30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+5-60n+4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\pm1\)
Vậy phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gỉa sử phân số 12n+1/30n+2 chưa tối giản
Ta suy ra (12n+1) và (30n+2) có một ước số chung nguyên tố d
Ta có d|12n+1;d|30n+2
=> d|24n+2
=> d|(30n+2)-(24n+2)=6n
=>d|12n
=>d|(12n+1)-12n
=>d|1=>d=1(vô lí)
Vâỵ phân số 12n+1/30n+2 tối giản
Chúc b học tốt
Gọi d là UCLN(12n + 1 ; 30n + 2)
Ta có :
\(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\)
==> \(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow UCLN\left(12n+1;30n+2\right)=1\)
=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau
Vậy phân số A tối giản với mọi số nguyên n
Gọi d là ƯCLN(12n+1;30n+2)
\(\Rightarrow\)12n+1\(⋮\)d=)5(12n+1)\(⋮\)d=)60n+5 chia hết cho d
30n+2\(⋮\)d=)2(30n+2)\(⋮\)d=)60n+4 chia hết cho d
Vì 60n+5 và 60n+4 \(⋮\)d
Nên (60n+5)-(60n+4)\(⋮\)d
60n+5-60n-4\(⋮\)d
1\(⋮\)d
Vậy phân số\(\dfrac{12n+1}{30n+2}\)tối giản
Săn mãi mới dc 1 câu :)
Gọi \(d=ƯCLN\left(12n+1;30n+2\right)=d\) (\(d\in N\)*)
\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
Vì \(d\in N\)*; \(1⋮d\Rightarrow d=1\)
\(\RightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Rightarrow\)Phân số \(\dfrac{12n+1}{30n+2}\) tối giản mới mọi n