Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)
Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành
Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)
Thử giải bài toán mới này xem sao bác.
*C/m bài toán mới của HUngnguyen
Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)
\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)
\(\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)
CỘng theo vế 3 BĐT trên ta có;
\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*
Guể :v t nhớ làm bài này rồi mà :v
Đặt \(x=\dfrac{bc}{a^2};y=\dfrac{ac}{b^2};z=\dfrac{ab}{c^2}\)\(\Rightarrow\left\{{}\begin{matrix}abc=1\\a,b,c>0\end{matrix}\right.\)
Và \(BDT\Leftrightarrow\dfrac{a^4}{b^2c^2+a^2bc+a^4}+\dfrac{b^4}{a^2c^2+ab^2c+b^4}+\dfrac{c^4}{a^2b^2+abc^2+c^4}\ge1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\)
Cần chứng minh \(\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\ge1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+a^2bc+abc^2\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) *Đúng theo AM-GM*
uh bài này làm rồi, tại lúc đó đầu hơi ngu nên không nhớ ra, thông cảm nhé
1. Vì x, y, z > 0
\(xy+yz+zx\ge2xyz\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\)
Suy ra:
\(\dfrac{1}{x}\ge1-\dfrac{1}{y}+1-\dfrac{1}{z}=\dfrac{y-1}{y}+\dfrac{z-1}{z}\ge2\sqrt{\dfrac{\left(y-1\right)\left(z-1\right)}{yz}}\). (1)
Tương tự \(\dfrac{1}{y}\ge2\sqrt{\dfrac{\left(z-1\right)\left(x-1\right)}{zx}}\) (2)
và \(\dfrac{1}{z}\ge2\sqrt{\dfrac{\left(x-1\right)\left(y-1\right)}{xy}}\) (3)
Nhân (1), (2), (3) với nhau theo vế ta được
\(\dfrac{1}{xyz}\ge\dfrac{8\left(x-1\right)\left(y-1\right)\left(z-1\right)}{xyz}\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{2}\)
2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)
Áp dụng BĐT AM-GM:
\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)
Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)
\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)
Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)
\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)
Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)
Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)
Ta phải chứng minh:
\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)
\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
Mà \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)
Theo C.B.S
\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Phải chứng minh
\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)
Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)
\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
=> ĐPCM
1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^2-xy+y^2\) (do x+y=1)
\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)
Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)
Vậy \(x^3+y^3\ge\dfrac{1}{4}\)
2.
a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))
Đẳng thức xảy ra \(\Leftrightarrow a=b\)
b) Lần trước mk giải rồi nhá
3.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)
b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)
\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)