K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

So sánh:\(\dfrac{237}{142}\)\(\dfrac{246}{151}\)

* Bài làm:

\(\dfrac{237}{142}\) > 1 => \(\dfrac{237}{142}\) > ​\(\dfrac{237+9}{142+9}\) hay \(\dfrac{237}{142}\) > \(\dfrac{246}{151}\)

5 tháng 5 2018

a) Giải tương tự bài 6.5 a)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

6 tháng 3 2018

So sánh: \(\dfrac{434}{561}\)\(\dfrac{441}{568}\)

* Bài làm:

\(\dfrac{434}{561}\) < 1 => \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\) hay \(\dfrac{434}{561}\) < \(\dfrac{441}{568}\)

7 tháng 3 2018

a) \(\dfrac{a}{b}\)=\(\dfrac{a\left(b+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+am}{b^2+bm}\) ; (1)

\(\dfrac{a+m}{b+m}\)=\(\dfrac{b\left(a+m\right)}{b\left(b+m\right)}\)=\(\dfrac{ab+bm}{b^2+bm}\) ; (2)

\(\dfrac{a}{b}\) < \(1\) \(\Rightarrow\) \(a\) < \(b\), suy ra \(ab+am\) < \(ab+bm\). (3)

Từ (1), (2) (3) ta có: \(\dfrac{a}{b}\) < \(\dfrac{a+m}{b+m}\)

b) Áp dụng, rõ ràng \(\dfrac{434}{561}\) < 1 nên \(\dfrac{434}{561}\) < \(\dfrac{434+7}{561+7}\)=\(\dfrac{441}{568}\)

16 tháng 5 2017

Không.

26 tháng 2 2018

Có, khi a = 0

23 tháng 6 2017

a) \(\forall\)n \(\in\) N* ta có :

\(\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (đpcm)

4 tháng 5 2018

Giải sách bà i tập Toán 6 | Giải bà i tập Sách bà i tập Toán 6

11 tháng 3 2017

phải là Lục Cẩn Niên chứ !

13 tháng 4 2018

Ta có: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Mà a = b + c nên Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1), (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6với a = b + c và a, b, c ∈ Z, b ≠ 0, c ≠ 0

1 tháng 5 2018

Ta có: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Mà a = b + c nên Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1), (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6với a = b + c và a, b, c ∈ Z, b ≠ 0, c ≠ 0

26 tháng 2 2017

a ) Nếu \(\frac{a}{b}>\frac{a+m}{b+m}\)

\(\Leftrightarrow a\left(b+m\right)>b\left(a+m\right)\)

\(\Leftrightarrow ab+am>ab+bm\)

\(\Leftrightarrow am>bm\)

\(\Rightarrow a>b\)

\(\Rightarrow\frac{a}{b}>1\)

Vậy \(\frac{a}{b}>1\) thì \(\frac{a}{b}>\frac{a+m}{b+m}\)

b ) Vì 237 > 142 => \(\frac{237}{142}>\frac{237+9}{142+9}=\frac{246}{151}\)

26 tháng 2 2017

Xét hiệu :

\(\frac{a}{b}-\frac{a+m}{b+m}\)

\(=\frac{a\left(b+m\right)}{b\left(b+m\right)}-\frac{\left(a+m\right)b}{\left(b+m\right)b}\)

\(=\frac{a.b+a.m}{b\left(b+m\right)}-\frac{a.b+b.m}{b\left(b+m\right)}\)

\(=\frac{a.b+a.m-a.b+b.m}{b\left(b+m\right)}\)

\(=\frac{m\left(a-b\right)}{b\left(b+m\right)}\)

Vì \(\frac{a}{b}>1,b\in\)N* \(\Rightarrow a>b\Rightarrow a-b>0,m\in\)N*

\(\Rightarrow m\left(a-b\right)>0\); Vì : \(b,m\in\)N* \(\Rightarrow b\left(b+m\right)>0\)

\(\Rightarrow\frac{m\left(a-b\right)}{b\left(b+m\right)}>0\) hay : \(\frac{a}{b}-\frac{a+m}{b+m}>0\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)

Vậy \(\frac{a}{b}>1,m\in\)N* thì \(\frac{a}{b}>\frac{a+m}{b+m}\)

b, Tự làm 

13 tháng 4 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

1 tháng 5 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

17 tháng 4 2017

Câu hỏi ôn tập chương 3 trang 62 SGK Toán 6 Tập 2 | Giải toán lớp 6

17 tháng 4 2017

Số nghịch đảo của phân số \(\dfrac{a}{b}\)là phân số \(\dfrac{b}{a}\) ; (a ,b ∈ Z , a ≠ 0 , b ≠ 0)