K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

\(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

\(a;b;c\) là các số thực dương nên:

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\\\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\\\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\end{matrix}\right.\)

Cộng theo 3 vế :

\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\)(1)

\(a;b;c\) là 3 số thực dương nên \(\dfrac{a}{a+b};\dfrac{b}{b+c};\dfrac{c}{c+a}< 1\) nên:

\(\left\{{}\begin{matrix}\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\\\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c}\\\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}\end{matrix}\right.\)

Cộng theo 3 vế:

\(A< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}=2\)(2)

Từ (1) và (2) ta có:

\(1< A< 2\)

24 tháng 9 2017

cám ơn bn nhiều nha

19 tháng 7 2018

Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)

\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)

\(\dfrac{a}{a+b+c}< \dfrac{c}{a+c}< \dfrac{c+b}{a+b+c}\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :

\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)

21 tháng 1 2019

Ta có:

\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\dfrac{99+1}{1\cdot99}+\dfrac{97+3}{3\cdot97}+...+\dfrac{1+99}{99\cdot1}}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{\left(1+\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{3}+...+\dfrac{1}{99}+1\right)}{100}}\)

\(=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)}{100}}=\dfrac{1}{\dfrac{2}{100}}=\dfrac{100}{2}=50\)

21 tháng 1 2019

\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+...+\dfrac{1}{99}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{1+\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{\dfrac{100}{100}+\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}}\)

\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}}{100\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)}=\dfrac{1}{100}\)

14 tháng 7 2017

by AM-GM: \(\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+n+1}\le\dfrac{1}{2}\left(\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\right)=\dfrac{1}{2}.\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)