Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
Câu 3:
a: \(\Leftrightarrow n-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(\Leftrightarrow4n+2+1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)
\(\Leftrightarrow n=\dfrac{13k+5}{4}\)
a)Ta có :74n-1=...1-1=...0\(⋮\)5
Vậy 74n-1\(⋮\)5
b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5
Vậy ...
c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5
Vậy ...
d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5
Vậy ...
e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10
Vậy
f)mik ko biết làm
g)mik cũng ko biết làm
Bài 2:
Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)
1:
\(n^2+4n+3\)
\(=n^2+3n+n+3\)
\(=\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì k+1;k+2 là hai số nguyên liên tiếp
nên \(\left(k+1\right)\left(k+2\right)⋮2\)
=>\(4\left(k+1\right)\left(k+2\right)⋮8\)
hay \(n^2+4n+3⋮8\)
2: \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)
=>\(k\left(k+1\right)\left(k+2\right)⋮6\)
=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)
hay \(n^3+3n^2-n-3⋮48\)
a) 3n + 2 chia hết cho n - 1
⇒⇒ 3n - 3 + 5 chia hết cho n - 1
⇒⇒ 3(n - 1) + 5 chia hết cho n - 1
⇒⇒ 5 chia hết cho n - 1
⇒⇒ n - 1 ∈∈ Ư(5) = {-1; 1; -5; 5}
⇒⇒ n ∈∈ {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
⇒⇒ 3n - 12 + 36 chia hết cho n - 4
⇒⇒ 3(n - 4) + 36 chia hết cho n - 4
⇒⇒ 36 chia hết cho n - 4
⇒⇒ n - 4 ∈∈ Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
⇒⇒ n ∈∈ {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
⇒⇒ 3n + 3 + 2 chia hết cho n + 1
⇒⇒ 3(n + 1) + 2 chia hết cho n + 1
⇒⇒ 2 chia hết cho n + 1
⇒⇒ n + 1 ∈∈ Ư(2) = {-1; 1; -2; 2}
⇒⇒ n ∈∈ {0; 2; -1; 3}