Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x=-2
b)x=1
c)x=1/2
f)x=1 hoặc x=-1
h)x=0 hoặc x=6
i)x=2
hok tốt!
_Lan Lan_
Áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
Áp dụng vào từng bài là được:
\(VD1:x^3+3x^2+3x+1=-1\)
\(\Rightarrow\left(x+1\right)^3=-1\)
\(\Rightarrow x=-2\)
\(VD2:x^3-9x^2+27x-27=-8\)
\(\Rightarrow\left(x-3\right)^3=-8\)
\(\Rightarrow x=1\)
a/ \(x^2=5\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
vậy .....
b/ \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3^2\\x^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy .......( nhầm cái ngoặc)
c/ \(x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Mà \(x^2\ge0\Leftrightarrow x\in\varnothing\)
Vậy ....
d/ \(\left(x-1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3^2\\\left(x-1\right)^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy ...
e/ \(\left(2x+3\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+3\right)^2=5^2\\\left(2x+3\right)^2=\left(-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy .....
f/ Ta có :
\(x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1^2\\x^2=\left(-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
\(\left(x-1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(x^2-9=0\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\)
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a. x2 - 1/4 = 0
x2 = 1/4
x2 = (1/2)2
=>x=1/2
b. x2 + 16 = 0
=>x2= -16 (vô lí)
=>ko tồn tại x tm~
c. x3 + 27 = 0
x3= -27
x3= (-3)3
=>x= -3
d. 2x3 - 16 = 0
x3 - 8 = 0
x3=8=23
=>x=2
e.[( - 0,5)3] = 1/64 =>????
h. (2n)2 = 64
22n=26
=>2n=6 => n=3
a) x = 1/2 hoặc x = -1/2
b) Ko có giá trị của x thỏa mãn
c) x = -3
d) x = 2 hoặc x = -2
e) Ko thấy x thì sao giải đc
h) n = 3
a) 3x2-7x=0
<=> x(3x-7)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{3}\end{cases}}}\)
b) làm tương tự
c) \(\left(x^2-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=3\\x^2-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=2\end{cases}}}\)
(5x+2)(x-7)=0
suy ra 5x+2=0 hoặc x-7=0
5x = -2
x = -2/5 hoặc x=7
\(x^2-x-6=0\Rightarrow x^2-2x+3x-6\\ \Rightarrow x\left(x-2\right)+3\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
hay x-2=0 hoặc x+3 = 0
vậy x = 2 hoặc x = -3
a)=>\(\left(2x+1\right)^2=\frac{1}{9}\)
\(=>\left(2x+1\right)^2=\frac{1}{3^2}\)
\(=>2x+1=\frac{1}{3}\)
\(=>2x=\frac{1}{3}-1\)
\(=>2x=\frac{-2}{3}\)
\(=>x=\frac{-2}{3}:2\)
\(=>x=\frac{-1}{3}\)
Vậy x = \(-\frac{1}{3}\)
b)\(=>\left(x-2\right)^3=27\)
\(=\left(x-2\right)^3=3^3\)
\(=>x-2=3\)
\(=>x=3+2\)
\(=>x=5\)
Vậy x = 5
c)=>x.x-x=0
TH1:\(\hept{\begin{cases}x.x=0\\x=0\end{cases}}\)\(=>\hept{\begin{cases}x=0\\x=0\end{cases}}\)
TH2:\(x.x=1.x=>x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d)\(x^4=27.x\)
\(=>x^4-27x=0\)
\(=>x^4-\left[\left(3\right)^3.x\right]=0\)
\(=>x^3.x-3^3.x=0\)
\(=>x.\left(x^3-3^3\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x^3-3^3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x^3=3^3\end{cases}=>\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
X khong thể bằng (-3) được
Vậy x \(\in\){0;3}
a) Ta có: \(\left(2x+1\right)^2-\frac{1}{9}=0\)
\(\left(2x+1\right)^2=\frac{1}{9}\)
mà \(\frac{1}{9}=\left(\frac{1}{3}\right)^2=\left(-\frac{1}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+1=\frac{1}{3}\\2x+1=-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-\frac{2}{3}\\2x=-\frac{4}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{3};-\frac{2}{3}\right\}\)
b) (x-2)3 + 27 = 0
(x-2)3 = -27
mà -27=(-3)3
=> x-2=-3
=> x= -1
c)Ta có: x2 - x = 0
x . (x-1) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(x\in\left\{0;1\right\}\)