Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)
\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)
\(\Rightarrow x=\frac{1.9}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
Vậy x = \(\frac{9}{5}\)
b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)
\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)
\(\Rightarrow x-2=\frac{5}{4}\)
\(\Rightarrow x=\frac{5}{4}+2\)
\(\Rightarrow x=\frac{13}{4}\)
Vậy x = \(\frac{13}{4}\)
_Chúc bạn học tốt_
\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
đúng cái nhé
1. 0,8 x 2 x 48 + 1,6 x 2 + 50 x 1,6
= 1,6 x 48 + 1,6 x 2 + 50 x 1,6
= 1,6 x [ 48 + 50 + 2 ]
= 1,6 x 100
= 160
2. 1/1x3 + 1/3x5 + 1/5x7 + 1/7x9
= 1/1 + 1/3 - 1/3 + 1/5 - 1/5 + 1/7 - 1/7 + 1/9
= 1/1 - 1/9
= 8/9
\(\frac{1}{1x2} +(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9} +\frac{2}{9x11})\)
\(=\frac{1}{1x2} + (\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11})\)
\(=\frac{1}{1x2}+(\frac{1}{3}-\frac{1}{11})\)
\(=\frac{1}{1x2} +\frac{10}{33}\)
\(=\frac{1}{2} + \frac{10}{33} = \frac{33}{66}+\frac{20}{66}\)
\(=\frac{53}{66}\)
\((\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11})\cdot y=\frac{2}{3}\)
\(\Rightarrow(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11})\cdot y=\frac{2}{3}\)
\(\Rightarrow1-\frac{1}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow\frac{10}{11}\cdot y=\frac{2}{3}\)
\(\Rightarrow y=\frac{2}{3}:\frac{10}{11}=\frac{11}{15}\)
Vậy :\(y=\frac{11}{15}\)
Bạn có muốn mình thử lại không?
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\frac{8}{9}\)
\(=\frac{4}{9}\)
#)Giải :
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(\Rightarrow2S=1-\frac{1}{9}=\frac{8}{9}\)
\(S=\frac{8}{9}:2=\frac{4}{9}\)
#~Will~be~Pens~#
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều