Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)
\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang
\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)
\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)
\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng
Vậy ĐTHS có 4 tiệm cận
tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2- ở dưới mẫu lại bằng 0 vậy ạ?
Ta có \(f'\left(x\right)=3ax^2+2bx+c;f"\left(x\right)=6ax+2b\)
Hàm số \(f\left(x\right)\) đạt cực tiểu tại \(x=0\) khi và chỉ khi
\(\begin{cases}f'\left(0\right)=0\\f"\left(0\right)>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\2b>0\end{cases}\)\(\Leftrightarrow\begin{cases}c=0\\b>0\end{cases}\left(1\right)\)
Hàm số \(f\left(x\right)\) đạt cực đại tại \(x=1\) khi và chỉ khi \(\begin{cases}f'\left(1\right)=0\\f"\left(1\right)< 0\end{cases}\)\(\Leftrightarrow\begin{cases}3a+2b+c=0\\6a+2b< 0\end{cases}\)
\(\begin{cases}f\left(0\right)=0\\f\left(1\right)=1\end{cases}\)\(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) \(\Leftrightarrow\begin{cases}d=0\\a+b+c+d=1\end{cases}\) (3)
Từ (1), (2), (3) suy ra \(a=-2;b=3;c=0;d=0\)
Kiểm tra lại \(f\left(x\right)=-2x^3+3x^2\)
Ta có \(f'\left(x\right)=-6x^2+6x;f"\left(x\right)=-12x+6\)
\(f"\left(0\right)=6>0\), hàm số đạt cực tiểu tại \(x=0\)
\(f"\left(1\right)=-6< 0\), hàm số đạt cực đại tại \(x=1\)
Vậy \(a=-2;b=3;c=0;d=0\)
ĐKXĐ: \(0< x\le2\)
Miền xác định của hàm không chứa vô cùng nên hàm ko có tiệm cận ngang
\(\lim\limits_{x\rightarrow0^+}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=-\infty\) nên \(x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2-x}}{\left(x-1\right)\sqrt{x}}=\infty\) nên \(x=1\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x+3}-2\right)}{x-1}.\dfrac{sinx}{x}=\dfrac{\sqrt{3}-1}{-1}.1=1-\sqrt{3}\) hữu hạn
\(\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt{x+3}-2\right)sinx}{x^2-x}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)sinx}{\left(x-1\right)x\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{sinx}{x\left(\sqrt{x+3}+2\right)}=\dfrac{sin1}{4}\) hữu hạn
\(\Rightarrow\) Đồ thị hàm số không có tiệm cận đứng
Hay số tiệm cận đứng là 0