Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-y\right)\left(4x^2-2xy+y^2\right)=\left(2x-y\right)\left(2x-y\right)^2=\left(2x-y\right)^3\)
\(b,\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2=2x^2-3xy+5y^2\)
\(c,\left(2x^3-21x^2+67x-60\right):\left(x-5\right)=\left(2x^3-10x^2-11x^2+55x+12x-60\right):x-5=\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)=\left(x-5\right)\left(2x^2-11x+12\right)\left(x-5\right):\left(x-5\right)=2x^2-11x+12\)
a) (x3 + 8y3) : (2y + x)
= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)
= x2 - 2xy + 4y2
b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)
= (x + y)3 : 2(x + y)
= \(\dfrac{\left(x+y\right)^2}{2}\)
c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2
= 2x2 - 3xy + 5y2
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
a)\(\left(2x-y\right)[\left(2x\right)^2-2.2x.y+y^2]\)
\(=\left(2x-y\right)^3\)
b)\(2x^2-3xy+5y^2\)
c)\(2x^3-10x^2-11x^2+55x+12x-60\)
\(=2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\)
\(=\left(x+5\right)\left(2x^2-11x+12\right)\)
\(\Leftrightarrow(2x^3-21x^2+67x-60)/\left(x-5\right)=2x^2-11x+12\)
1)\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}=\frac{2y}{5\left(x+y\right)^2}\)
2) \(\frac{15x\left(x+y\right)^2}{20x^2\left(x+5\right)}=\frac{3\left(x^2+2xy+y^2\right)}{4x\left(x+5\right)}=\frac{3\left(x+y\right)^2}{4x^2+20x}\)
3) \(\frac{15x\left(x-y\right)}{3\left(y-x\right)}=\frac{5x\left(x-y\right)}{-3\left(x-y\right)}=-\frac{5x}{3}\)
4)\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(x+y\right)}{\left(x-y\right)^3}=\frac{-\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}=\frac{-\left(x+y\right)}{\left(x-y\right)^2}\)
Giải
1) 3xy2 : 5x = \(\frac{3}{5}\)y2
2) 15x4yz3 : 4xyz = \(\frac{15}{4}\)x3z2
3) (4x2y2 - 12xy3 - 7x) : 3x = \(\frac{4}{3}\)xy2 - 4y3 - \(\frac{7}{3}\)
4) (14x4y2 - 12xy3 - x) : 4x = \(\frac{7}{2}\)x3y2 - 3y3 - \(\frac{1}{4}\)
5) (6x2 + 13x - 5) : (2x + 5) = (3x - 1)(2x + 5) : (2x + 5) = 3x - 1
6) (2x4 + x3 - 5x2 - 3x - 3) : (x2 - 3)
= 2x4 + x2 - 6x2 + x3 - 3 - 3x : x2 - 3
= x2(2x2 + x + 1) - 3(2x2 + x + 1) : x2 - 3
= (2x2 + x + 1)(x2 - 3) : x2 - 3
= 2x2 + x + 1
\(\left(6x^3y^2-15x^2y^2-2xy^4\right):3xy^2\)
\(=2x^2-5x-\frac{2}{3}y^2\)
(6x3y2 - 15x2y2 - 2xy4) \(\div\) 3xy2
= 2x2 - 5x - \(\frac{2}{3}\)y2
Chúc bạn học tốt!