Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So dau tien cua day la
498-(100-1)*3=201
Đáp số:201
tk cho mình nhé
mình ít điểm hỏi đáp lắm
thông cảm cho mình
a)Gọi số hạng đầu tiên là x(x thuộc N)
Thấy trong dãy các số ..;24;27;30 cách đều nhau 3 đơn vị.Mà dãy có 10 số hạng
Dựa theo công thức tính SSH [(Cuối - đầu):k/c+1]
Thay vào ta có: (30-x):3+1=10
30-x=(10-1)x3
30-x=27
x=30-27
x=3
Vậy số hạng đầu tiên của dãy ...,24,27,30 là 3
b) Làm tương tự dãy a
các anh,chị ơi em cũng có bài này cần hỏi
các anh,chị làm cho em theo kiểu toán lớp 4 với ạ
Dãy số thứ nhất mỗi số hạng cách nhau 5 đơn vị
Vậy số hạng đầu tiên của dãy thứ nhất là:
47 - 5 = 42
Đáp số: 42
Dãy số thứ hai: Số thứ hai cách số thứ ba 17 đơn vị, số thứ ba cách số thứ tư 19 đơn vị => khoảng cách là các số lẻ liên tiếp
Vậy số thứ nhất cách số thứ hai 15 đơn vị
Số đầu tiên của dãy thứ hai là:
64 - 15 = 49
Đáp số: 49
thanh ơi bạn không tự nghĩ bạn đánh câu hỏi lên olm
Số hạng đầu tiên là 201
k mk nha mk chắc đó bài này mk làm trên violympic rùi
Số hạng thứ 3 là: (64 + 36) : 2 = 50
Số hạng thứ 4 là: (64 + 36 + 50) : 3 = 50
Vì là trung bình cộng nên các số sau khi cộng vào rồi chia vẫn sẽ được số hạng thứ 3 (50)
=> Tổng của 2020 số hạng đầu tiên là:
64 + 36 + 50 . 2018 = 101000
Đáp số: 101000
#Shinobu Cừu
Tổng 2 số hạng đầu là: 64 + 56 = 100 = 2 x 50
Số hạng thứ 3 là: 2 x 50 : 2 = 50
Số hạng thứ 4 là: ( 2 x 50 + 50 ) : 3 = ( 3 x 50 ) : 3 = 50
Số hạng thứ 5 là: ( 4 x 50 ) : 4 = 50
Số hạng thứ 6 là: ( 5 x 50) : 5 = 50
.....
Số hạng thứ 2020 là: ( 2019 x 50 ) : 2019 = 50
Tổng của 2020 số hạng đầu tiên là: 2020 x 50 = 101 000
Đáp số:...
ta có:
0=3.0; 3=3.1; 6=3.2;...
=>200 số đầu tiên là:
3.0; 3.1; 3.2; 3.3; .....; 3.199
tổng của 200 số đó là:
3.0+3.1+3.2+3.2+....+3.199
=3.(0+1+2+3+....+199)(1)
tổng của các số từ 0 đến 199 =\(\frac{\left(199+0\right).200}{2}\)=\(199.100=19900\)(2)
Từ 1 và 2 =>tổng của 200 số đầu trong dãy số đó
=3.19900=59700
Ta có:
Số số hạng của tổng là:
(57-1):n+1=15 (số hạng) (trong đó n là khoảng cách giữa hai số liên tiếp trong dãy)
56:n=15-1
56:n=14
n=56:14
n=4
Vậy khoảng cách giữa hai số liên tiếp trong dãy số là 4
Vậy dãy số là:1;5;9;13;17;21;........;53;57.
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Nếu số hạng đầu tiên có 1 chữ số thì số đó là số dư của phép chia sau :
63 : (57 - 51) = 10 dư 3
Nếu số hạng đầu tiên có 2 chữ số thì số đó là :
3 + 6 x 2 = 15
45, 51, 57, 63