Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=\sqrt{12^2.3}-\sqrt{11^2.3}+\sqrt{4^2.3}-\sqrt{5^2.3}+\sqrt{6^2.3}-\sqrt{7^2.3}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\sqrt{3}.\left(12-11+4-5+6-7\right)\)
\(=-\sqrt{3}\)
\(2,6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=6.2\sqrt{15}-5.2\sqrt{2}+3\sqrt{15}+4.4\sqrt{2}+3.8\sqrt{2}-2.25\sqrt{2}\)
\(=12\sqrt{15}+3\sqrt{15}-10\sqrt{2}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\sqrt{15}.\left(12+3\right)+\sqrt{2}.\left(-10+16+24-50\right)\)
\(=15\sqrt{15}-20\sqrt{2}\)
1/ \(\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\left(12-11+4-5+6-7\right)\sqrt{3}\)
\(=-\sqrt{3}\)
2/ \(6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=12\sqrt{15}-10\sqrt{2}+3\sqrt{15}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\left(12+3\right)\sqrt{15}+\left(-10+16+24-50\right)\sqrt{2}\)
\(=15\sqrt{15}-20\sqrt{2}\)
\(A=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}\)
\(A=2\sqrt{4.2}-3\sqrt{9.2}+4\sqrt{64.2}-5\sqrt{16.2}\)
\(A=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(A=7\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^3-2xy\left(x+y\right)=32\\x^2y^2\left[\left(x+y\right)^2-2xy\right]=128\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)
\(\Rightarrow\left\{{}\begin{matrix}a\left(a^2-2b\right)=32\\b^2\left(a^2-2b\right)=128\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\\frac{b^2}{a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-2ab=32\\a=\frac{b^2}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{b^6}{64}-\frac{b^3}{2}=32\)
\(\Leftrightarrow\frac{1}{64}b^6-\frac{1}{2}b^3-32=0\Rightarrow\left[{}\begin{matrix}b^3=64\\b^3=-32\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}b=4\Rightarrow a=4\\b=-2\sqrt[3]{4}\Rightarrow a=2\sqrt[3]{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=4\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=2\sqrt[3]{2}\\xy=-2\sqrt[3]{4}\end{matrix}\right.\end{matrix}\right.\) theo Viet đảo x và y là nghiệm:
\(\left[{}\begin{matrix}t^2-4t+4=0\\t^2-2\sqrt[3]{2}t-2\sqrt[3]{4}=0\end{matrix}\right.\) \(\Rightarrow t=...\)
Ta có : \(S_{xq}=2\pi Rh=128\pi\)
=> \(Rh=64\)
Mà R = h
=> \(R^2=h^2=64\)
=> R = h = 8 ( cm )
=> \(V=\pi R^2h=\pi8^2.8=512\pi\left(cm^3\right)\)
Đáp án thiếu pi bạn ới
\(A=\dfrac{\sqrt[4]{7\sqrt[3]{54}+15\sqrt[3]{128}}}{\sqrt[3]{\sqrt[4]{32}}+\sqrt[3]{9\sqrt[4]{162}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{7\sqrt[3]{3^3.2}+15\sqrt[3]{4^3.2}}}{\sqrt[3]{\sqrt[4]{2^4.2}}+\sqrt[3]{9\sqrt[4]{3^4.2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{7.3\sqrt[3]{2}+15.4\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{9.3\sqrt[4]{2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{21\sqrt[3]{2}+60\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{3^3\sqrt[4]{2}}}\)
\(\Leftrightarrow A=\dfrac{\sqrt[4]{81\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}=\dfrac{3\sqrt[4]{\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}\)
\(\Leftrightarrow A=\dfrac{3}{\sqrt[3]{2}+3}\)
\(\frac{3\sqrt{128}}{\sqrt{2}}=\frac{\sqrt{9.128}}{\sqrt{2}}=\sqrt{\frac{1152}{2}}=\sqrt{576}=24\)
\(=\left(\sqrt{6}-\sqrt{3}\right)^2-1+\sqrt{\frac{8-8\sqrt{2}}{\sqrt{\left(\sqrt{2}-1\right)^2}}}+6\sqrt{2}\)
Đề bài sai rồi bạn, \(8-8\sqrt{2}< 0\) nên căn thức không có nghĩa
Ý tưởng của người ra đề là đặt 8 làm nhân tử chung rồi rút gọn mẫu, rất tiếc bạn ghi sai đề =))
Lớp mình chữa xong bài này rồi bạn. Có thể là bạn không biết cách làm :)
đặt 3 ra ngoài,,,,đặt bên trong là A ,,rồi nhân A vs 1/2 ,,lấy A-1/2A=,,,,,,, đc bao nhiu chia 1/2