Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là toán lớp 1 hả??????????? Tớ nghĩ là toán lớ 6 đấy!!!!!!
Đặt \(A=\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{x\left(x+2\right)}\)(sửa đề)
\(\Rightarrow A=\frac{1}{2}.3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{3}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)\)
\(\Rightarrow A=\frac{1}{2}-\frac{3}{2x+4}\)
Sửa đề \(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{3}{2}\left(1-\frac{1}{101}\right)=\frac{3}{2}-\frac{3}{202}< \frac{3}{2}\)
Sửa đề: \(\dfrac{3}{1\cdot3}+\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+...+\dfrac{3}{99\cdot101}\)
Ta có: \(\dfrac{3}{1\cdot3}+\dfrac{3}{3\cdot5}+\dfrac{3}{5\cdot7}+...+\dfrac{3}{99\cdot101}\)
\(=\dfrac{3}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{3}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{300}{202}=\dfrac{150}{101}\)
cảm ơn bạn nhé