Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + 3x - 7y = 21 (1)
xy + 3x - 2y = 11 (2)
LẤy (1) - (2) => xy + 3x - 7y - ( xy + 3x - 2y) = 21 - 11 = 10
=> xy + 3x - 7y - xy - 3x + 2y = 10
=> -5y = 10
=> y = -2 Thay vào ta có
x.y +3x - 7y = x. (-2) + 3. x - 7 (-2) = 21
=> -2x + 3x + 14 = 21
=> x = 21 - 14 = 7
Vậy x = 7 ; y = -5
Tick đúng nha bạn
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
xy + 3x - 7y = 21 (1)
xy + 3x - 2y = 11 (2)
LẤy (1) - (2) => xy + 3x - 7y - ( xy + 3x - 2y) = 21 - 11 = 10
=> xy + 3x - 7y - xy - 3x + 2y = 10
=> -5y = 10
=> y = -2 Thay vào ta có
x.y +3x - 7y = x. (-2) + 3. x - 7 (-2) = 21
=> -2x + 3x + 14 = 21
=> x = 21 - 14 = 7
Vậy x = 7 ; y = -5
Tick đúng nha you
a) \(\left(x-7\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)
Vậy: x∈{7;-12}
b) \(\left(3x-15\right)\left(6-2x\right)=0\)
⇔\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)
hay \(6\left(x-5\right)\left(3-x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy: x∈{3;5}
c) \(\left(3x+9\right)\left(4y-8\right)=0\)
⇔\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)
hay \(12\left(x+3\right)\left(y-2\right)=0\)
Vì 12≠0
nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
Vậy: x=-3 và y=2
d) \(\left(2y-16\right)\left(8x-24\right)=0\)
⇔\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)
hay 16(y-8)(x-3)=0
Vì 16≠0
nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)
Vậy: y=8 và x=3
e) \(\left(22-11y\right)\left(9x-18\right)=0\)
⇔\(11\left(2-y\right)9\left(x-2\right)=0\)
hay 99(2-y)(x-2)=0
Vì 99≠0
nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)
Vậy: x=2 và y=2
g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)
⇔7(y+2)*9(x-2)=0
hay 63(y+2)(x-2)=0
Vì 63≠0
nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
Vậy: y=-2 và x=2
h) xy=3
⇒x,y∈Ư(3)
⇒x,y∈{1;-1;3;-3}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}
i) x*y=-5
⇔x,y∈Ư(-5)
⇔x,y∈{1;-1;5;-5}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}
k) \(\left(x+4\right)\left(y-5\right)=-3\)
⇔x+4; y-5∈Ư(-3)
⇔x+4; y-5∈{1;3;-3;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)
Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}
m) (x-9)(y-5)=-1
⇔x-9; y-5∈Ư(-1)
⇔x-9; y-5∈{1;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
Vậy: x∈{10;8} và y∈{4;6}
n) x+3⋮x+4
⇔x+4-1⋮x+4
⇔-1⋮x+4
hay x+4∈Ư(-1)
⇔x+4∈{1;-1}
⇔x∈{-3;-5}
Vậy: x∈{-3;-5}
p)(x-5)⋮x+2
⇔x+2-7⋮x+2
hay -7⋮x+2
⇔x+2∈Ư(-7)
⇔x+2∈{1;-1;7;-7}
hay x∈{-1;-3;5;-9}
Vậy: x∈{-1;-3;5;-9}
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
\(a,\left(3-x\right).\left(x+3\right)>0\Leftrightarrow\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\) ( thỏa mãn ) hoặc \(\hept{\begin{cases}x>3\\x< -3\end{cases}}\) ( vô lý )
\(\Leftrightarrow-3< x< 3\)
Vậy với mọi x thỏa mãn \(-3< x< 3\) thì \(\left(3-x\right).\left(x+3\right)>0\)
\(b,\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}}\)
Mà \(x^2\ge0\Rightarrow x^2=-1\) là vô lý
Vậy \(x=1\)