K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Sửa đề:

\((2x^2+x-2015)^2+4(x^2-5x-2016)^2=4(2x^2+x-2015)(x^2-5x-2016)\)

\(\Rightarrow\left(2x^2+x-2015\right)^2-2.\left(2x^2+x-2015\right).2.\left(x^2-5x-2016\right)+[2.\left(x^2-5x-2016\right)]^2=0\)

\(\Rightarrow[2x^2+x-2015-2.\left(x^2-5x-2016\right)]^2=0\)

\(\Rightarrow11x+2017=0\)

\(\Rightarrow x=\frac{-2017}{11}\)

15 tháng 3 2018

\(\dfrac{x+2}{2016}+\dfrac{x+3}{2015}+\dfrac{x+4}{2014}+\dfrac{x+2036}{6}=0\)

<=>\(\dfrac{x+2}{2016}+1+\dfrac{x+3}{2015}+1+\dfrac{x+4}{2014}+1+\dfrac{x+2036}{6}-3=0\)

<=>\(\dfrac{x+2018}{2016}+\dfrac{x+2018}{2015}+\dfrac{x+2018}{2014}+\dfrac{x+2018}{6}=0\)

<=>\(\left(x+2018\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{6}\right)=0\)

vì 1/2016+1/2015+1/2014+1/6 khác 0

=>x+2018=0<=>x=-2018

vậy...................

chúc bạn học tốt ^ ^

2 tháng 5 2016

Đặt 2x2+x-2015=a; x2-5x-2016=b

phương trình tương đương a2+4b2=4ab

=> a2-4ab+4b2=0

=> (a-2b)2=0

=> a=2b

vậy 2x2+x-2015=2*(x2-5x-2016)

=> x=\(\frac{-2017}{11}\)

6 tháng 10 2020

Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))

\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)

Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)

\(=2015+1=2016\)

Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)

Đến đây xét tiếp các TH nhé, ez rồi:))

6 tháng 10 2020

chẳng biết đúng ko,mới lớp 5

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)

\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)

\(x-\sqrt{6x}=2-\frac{2015}{4033}\)

\(x-\sqrt{6x}=\frac{6051}{4033}\)

11 tháng 11 2017

\(\dfrac{2x+4}{2015}-\dfrac{2x+4}{2016}=\dfrac{2x+4}{2017}-\dfrac{2x+4}{2018}\)

\(\Rightarrow\left(2x+4\right)\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\left(2x+4\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(\dfrac{1}{2015}-\dfrac{1}{2016}\ne\dfrac{1}{2016}-\dfrac{1}{2017}\) nên 2x + 4 = 0

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

Vậy, x = -2

11 tháng 11 2017

\(\dfrac{2x+4}{2015}-\dfrac{2x+4}{2016}=\dfrac{2x+4}{2017}-\dfrac{2x+4}{2018}\)

\(\Rightarrow\left(2x+4\right)\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\left(2x+4\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)

\(\dfrac{1}{2015}-\dfrac{1}{2016}\ne\dfrac{1}{2016}-\dfrac{1}{2017}\) nên \(2x+4=0\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

Vậy, x = -2

4 tháng 3 2019

Với dạng bài này ta chỉ việc chia hoocne là ra nhé!

\(C1:x^4+x^3-8x^2-9x-9=0\\ \Leftrightarrow\left(x-3\right)\left(x^3+4x^2+4x+3\right)\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x^2+x+1\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x^2+x+1=0\left(VN\right)\end{matrix}\right.\)

\(C2:x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

4 tháng 3 2019
https://i.imgur.com/1LBiPm6.jpg
6 tháng 4 2018

\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)

\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)

Suy ra: \(x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-1}