Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a) x3 + 2x2y + xy2– 9x = x(x2 +2xy + y2 – 9)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
= x(x + y – 3)(x + y + 3)
b) 2x – 2y – x2 + 2xy – y2 = (2x – 2y) – (x2 – 2xy + y2)
= 2(x – y) – (x – y)2
= (x – y)[2 – (x – y)]
= (x – y)(2 – x + y)
c) x4 – 2x2 = x2(x2 – (√2)2) = x2(x - √2)(x + √2).
a)\(\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
b)\(x\left(y+1\right)+\left(y+1\right)=\left(y+1\right)\left(x+1\right)\)
c)\(\left(x+y\right)^2-2\left(x+y\right)=\left(x+y\right)\left(x+y-2\right)\)
c) 2x^3y - 2xy^3 - 4xy^2 - 2xy
= 2xy ( x^2 - y^2 - 2y - 1 )
= 2xy ( x^2 - ( y^2 + 2y + 1 )
= 2xy ( x^2 - ( y + 1 )^2 )
= 2x ( x - y - 1 )( x + y + 1 )
sai bạn ơi !
đáp án là
= 2xy (x + y + 1) (x - y + 1)
that pun cho ban Nguyen Dieu Thao :((
1:
a) \(x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
2
\(-2x^2-4x+6=0\)
\(\Leftrightarrow-2\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
1,
a) x( x2 + 2x +1) = x(x+1)2
b)25 - (x-2y)2 = (5-x+2y)(5+x-2y)
2,
(x-1)(x+3)=0
<=>x=1 hoặc x=-3
a) x3 – 2x2 + x = x(x2 – 2x + 1) = x(x – 1)2
b) 2x2 + 4x + 2 – 2y2 = 2[(x2 + 2x + 1) – y2]
= 2[(x + 1)2 – y2]
= 2(x + 1 – y)(x + 1 + y)
c) 2xy – x2 – y2 + 16 = 16 – (x2 – 2xy + y2) = 42 – (x – y)2
= (4 – x + y)(4 + x – y)
Lời giải:
$2x^2+y^2-2xy+2x-4y+9$
$=(x^2+y^2-2xy)+4(x-y)+(x^2-2x+1)+8$
$=(x-y)^2+4(x-y)+4+(x-1)^2+4$
$=(x-y+2)^2+(x-1)^2+4$
Này chỉ tính được min thôi chứ không phân tích được thành nhân tử bạn nhé.