Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=9x2+18xy+9y2-6x-6y-300
3A=(3x+3y)2-2(3x+3y)+1-301
3A=[3(x+y)-1] -301
thay x+y vào là xong nhé!
BÀi 1
D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )2 - 6
Vì - (x - 2 )2 \(\le0\)nên - (x - 2 )2 - 6 \(\le-6< 0\)
Vậy D = 4x - 10 - x2 luôn âm (dpcm)
(x-3)(\(x^2\)+3x+9)+x(5-\(x^2\))=6x
⇔x(\(x^2\)+3x+9) - 3(\(x^2\)+3x+9) + 5x - \(x^3\) = 6x
⇔\(x^3\)+\(3x^2\)+\(9x\)-3\(x^2\)-\(9x\)-27+5x-\(x^3\)=6x
⇔ 5x - 27 = 6x
⇔ 5x - 6x = 27
⇔ -1x = 27
⇔ x = -27
Bạn có thể giải lại, mình chưa chắc nó là đúng ^^"
\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)
Bài 2:
a) \(x^2-4x+y^2+2y+5=0\)
=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:
=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)\(2x^2+y^2-2xy+10x+25=0\)
=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)
Tới đây thì dễ nhá !
a) x2 - 2x + 4x - 8 = 0
=> x.(x - 2) + 4.(x - 2) = 0
=> (x - 2).(x + 4) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
b) x(x + 3) - 3x - 9 = 0
=> x.(x + 3) - 3.(x + 3) = 0
=> (x + 3).(x - 3) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) x2 - 6x + 5 = 0
=> x2 - x - 5x + 5 = 0
=> x.(x - 1) - 5.(x - 1) = 0
=> (x - 1).(x - 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
1/\(x^2-2x+4x-8=0\)
=>\(x\left(x-2\right)+4\left(x-2\right)=0\)
=>\(\left(x-4\right)\left(x-2\right)=0\)
=>\(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
2/\(x\left(x+3\right)-3x-9=0\)
=>\(x\left(x+3\right)-3\left(x+3\right)=0\)
=>\(\left(x-3\right)\left(x+3\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
3/\(x^2-6x+5=0\)
=>\(x^2-x-5x+5=0\)
=>\(x\left(x-1\right)-5\left(x-1\right)=0\)
=>\(\left(x-5\right)\left(x-1\right)=0\)
=>\(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
pt <=> ( 2x + 3 )( x - 5 ) - 2x( 2x + 3 ) = 0
<=> ( 2x + 3 )( -x - 5 ) = 0
<=> x = -3/2 hoặc x = -5
Vậy ...
\(\left(2x+3\right)\left(x-5\right)=4x^2+6x\Leftrightarrow\left(2x+3\right)\left(x-5\right)=2x\left(2x+3\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(-x-5\right)=0\Leftrightarrow x=-\frac{3}{2};x=-5\)
Vậy tập nghiệm của pt là S = { -5 ; -3/2 }