Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
3y = 4z - 2y \(\Rightarrow\)5y = 4z \(\Rightarrow\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)
\(\Rightarrow x=18;y=12;z=15\)
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
\(3y=4z-2y\Rightarrow4z=5y\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(2x=5y=4z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{5}+\frac{1}{4}}=\frac{45}{\frac{19}{20}}=\frac{900}{19}\)
\(2x=\frac{900}{19}\Rightarrow x=\frac{900}{19}:2=\frac{450}{19}\)
\(5y=\frac{900}{19}\Rightarrow y=\frac{900}{19}:5=\frac{180}{19}\)
\(4z=\frac{900}{19}\Rightarrow z=\frac{900}{19}:4=\frac{225}{19}\)
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Mình sửa lại đề cho bạn nhé: Tìm x,y,z biết: 2x=3y=4z-2y và x+y+z=45
Ta có;\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) (1)
\(3y=4z-2y\Rightarrow5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\) (2)
Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)
Khi đó : \(\frac{x}{6}=3\Rightarrow x=18\)
\(\frac{y}{4}=3\Rightarrow y=12\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy ___________
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)( 1 )
\(3y=4z-2y\Rightarrow5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\)( 2 )
Từ ( 1 ) và ( 2 ) => \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)
\(\Rightarrow\frac{x}{6}=3\Rightarrow x=3.6=18\)
\(\Rightarrow\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(\Rightarrow\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy x = 18
y = 12
z = 15.