K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

Ta có:

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)( 1 )

\(3y=4z-2y\Rightarrow5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\)( 2 )

Từ ( 1 ) và ( 2 ) => \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)

\(\Rightarrow\frac{x}{6}=3\Rightarrow x=3.6=18\)

\(\Rightarrow\frac{y}{4}=3\Rightarrow y=3.4=12\)

\(\Rightarrow\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy x = 18

y = 12

z = 15.

9 tháng 6 2019

\(=18\)

\(y=12\)

\(=15\)

9 tháng 6 2019

2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)

3y = 4z - 2y \(\Rightarrow\)5y = 4z \(\Rightarrow\frac{y}{4}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)

\(\Rightarrow x=18;y=12;z=15\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

1 tháng 10 2017

\(3y=4z-2y\Rightarrow4z=5y\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(2x=5y=4z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{4}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{5}+\frac{1}{4}}=\frac{45}{\frac{19}{20}}=\frac{900}{19}\)

\(2x=\frac{900}{19}\Rightarrow x=\frac{900}{19}:2=\frac{450}{19}\)

\(5y=\frac{900}{19}\Rightarrow y=\frac{900}{19}:5=\frac{180}{19}\)

\(4z=\frac{900}{19}\Rightarrow z=\frac{900}{19}:4=\frac{225}{19}\)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

14 tháng 7 2015

Mình sửa lại đề cho bạn nhé: Tìm x,y,z biết:  2x=3y=4z-2y và x+y+z=45

Ta có;\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)        (1)

         \(3y=4z-2y\Rightarrow5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\)   (2)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng t/c của dãy tỉ số = nhau, ta có: 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3\)

Khi đó : \(\frac{x}{6}=3\Rightarrow x=18\)

            \(\frac{y}{4}=3\Rightarrow y=12\)

             \(\frac{z}{5}=3\Rightarrow z=15\)

Vậy ___________