Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 3n +2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc ước của 5 là 1;-1;5;-5
=> n thuộc 2 ;0;6;-4;
\(\text{1,3n + 2 chia hết cho n - 1 }\)
= > 3n - 3 + 5 chia hết cho n - 1
= > 5 chia hết cho n - 1
= > n - 1 thuộc ước của 5 là : 1;-1;5;-5
= > n thuộc 2;0;6;-4;
(n+1)(n+2)(n+3)....2n ( 1 )
Dễ thấy ( 1 ) đúng với n = 2
giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k
Ta chứng minh BĐT đúng với n = k+1
\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1
Thật vậy, theo giả thiết quy nạp,ta có :
(k+1)(k+2)(k+3)...2k > 2k
\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k
\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1
\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1
Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
vì \(n-1⋮n-1\)\(\Rightarrow2\left(n-1\right)⋮n-1\)\(\Rightarrow2n-2⋮n-1\)
\(\Leftrightarrow\left(2n+3\right)-\left(2n-2\right)⋮n-1\)
\(\Leftrightarrow5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)mà \(x\in N\)
\(n-1\in\left\{1;5\right\}\)
ta có bảng:
n-1 | 1 | 5 |
n | 2 | 6 |
vậy \(x\in\left\{2;6\right\}\)
a) Ta có: \(2n+1=2n-4+5\)
mà \(\left(2n-4\right)⋮\left(n-2\right)\Rightarrow5⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(5\right)\)
hồi trưa mk phải đi học xl bn nha mấy câu còn lại nè
b) Ta có: \(2n-5=2n+2-7\)
mà \(\left(2n+2\right)⋮\left(n+1\right)\Rightarrow7⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(7\right)\)
2n +1 ⋮ n-2
n+n+1⋮n-2
n+n-2-2+5⋮n+2
2(n-2)+5 ⋮ n-2
⇒ 5 ⋮ n- 2
hay n-2 ∈ Ư(5)={1;5;-1;-5}
⇒ n ∈ { 3,7,1,-3 }
Vậy n = 3,7,1,-3
a) (x-3)+(y+2)=6
<=>x+y-1=6
<=>x+y=7
Bài này thì có vô số nghiệm
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
Có: \(3n+1⋮n+2;4n-5⋮2n-1\)
=> \(\left(3n+6\right)-5⋮n+2\)và \(\left(4n-2\right)-3⋮2n-1\)
=> \(3\left(n+2\right)-5⋮n+2\)và \(2\left(2n-1\right)-3⋮2n-1\)
Mà \(3\left(n+2\right)⋮n+2\)và \(2\left(2n-1\right)⋮2n-1\)
=> \(5⋮n+2\)và \(3⋮2n-1\)
=> \(n+2\inƯ\left(5\right)=\left\{-5;-1;5;1\right\}\)và \(2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Lập bảng:
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
và
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
=> \(n=-1\)(Do thỏa mãn cả hai điều kiện)
Bạn viết rõ đề bài hơn dk
Ta có 2 ^2n .( 2^2n+1-1)-1
=2^4n+1 -2^2n-1
=2. 2n^4n-2^2n-1
=2(2^2n)^2-2^2n-1
Đặt A =2(2^2n)^2-2^2n-1
Đặt 2^2n =t -> A =2t^2-t-1
=(2t+1)(t-1)
=( 2.2^2n. +1 )(2^2n-1)