\(\varepsilon\)N biết 2n+3 chia hết cho n-1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

vì \(n-1⋮n-1\)\(\Rightarrow2\left(n-1\right)⋮n-1\)\(\Rightarrow2n-2⋮n-1\)

\(\Leftrightarrow\left(2n+3\right)-\left(2n-2\right)⋮n-1\)

\(\Leftrightarrow5⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(5\right)\)mà \(x\in N\)

\(n-1\in\left\{1;5\right\}\)

ta có bảng:

n-115
n26

vậy \(x\in\left\{2;6\right\}\)

15 tháng 11 2019

Có:

2n+3=2(n-1)+5

Vì 2(n-1) chia hết cho n-1

=>5 chia hết cho n-1

=>n-1 là Ư(5)

=>Ư(5)={-1;1;-5;5}

NX:

+)n-1=-1=>n=0(tm)

+)n-1=1=>n=2(tm)

+)n-1=-5=>n=-4(loại)

+)n-1=5=>n=6(tm)

Vậy...

22 tháng 5 2019

(n+1)(n+2)(n+3)....2n  ( 1 )

Dễ thấy ( 1 ) đúng với n = 2

giả sử bất đẳng thức đúng với n = k nghĩa là (k+1)(k+2)(k+3)...2k > 2k

Ta chứng minh BĐT đúng với n = k+1

\(\Rightarrow\)( k + 2 )(k+3)(k+4)...2(k+1) > 2k+1

Thật vậy, theo giả thiết quy nạp,ta có :

(k+1)(k+2)(k+3)...2k > 2k

\(\Rightarrow\)(k+1)(k+2)(k+3)...2k(2k+1) > 2k

\(\Rightarrow\)2(k+1)(k+2)(k+3)...2k(2k+1) > 2k+1

\(\Rightarrow\)(k+2)(k+3)...2k(2k+1)(2k+2) > 2k+1

Vậy BĐT ( 1 ) đúng với mọi n > 1 hay .....

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

20 tháng 2 2017

a/ \(\frac{3n}{n-1}=\frac{3n-3+3}{n-1}=3+\frac{3}{n-1}\)

để 3n chia hết cho n-1 thì n-1 phải thuộc ước của 3

suy ra n-1 thuộc -3;-1;1;3

suy ra n thuộc -2;0;2;4

b/\(\frac{n+10}{n-1}=\frac{n-1+11}{n-1}=1+\frac{11}{n-1}\)

để n+10 là bội của n-1 thì 11 phải là bội của n-1

suy ra n-1 thuộc -11;-1;1;11

suy ra n thuộc -10;0;2;12

gặp dạng toán như vậy thì bạn cứ áp dụng cách này để làm nhé

c/ gọi ba số đó là n-1;n;n+1

ta thấy \(\left(n-1\right)+n+\left(n+1\right)=3n\)chia hết cho 3 với mọi n thuộc Z

vậy tổng 3 số liên tiếp luôn chia hết cho 3

nhớ k cho mình nhé  ^.^

20 tháng 2 2017

Ta có : 3n chia hết cho n - 1 

<=> 3n - 3 + 3 chia hết cho n - 1

<=> 3(n - 1) + 3 chia hết cho n - 1

<=> 3 chia hết cho n - 1

<=> n - 1 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng:

n - 1-3-113
n-2024
4 tháng 7 2016

\(n^2+13n=n^2+6n+7n+9-9=\left(n^2+6n+9\right)+\left(7n-9\right)\)

\(=\left(n^2+3n+3n+9\right)+\left(7n-9\right)=\left[n\left(n+3\right)+3\left(n+3\right)\right]+\left(7n-9\right)=\left(n+3\right)^2+\left(7n-9\right)\)

Mà (n+3)2 chia hết cho n+3

=>7n-9 chia hết cho n+3

=>7(n+3)-30 chia hết cho n+3

=>-30 chia hết cho n+3 (vì 7(n+3) chia hết cho n+3))

=>n+3 \(\in\) Ư(-30)={-30;-15;-10;-6;-5;-3;-2;-1;;1;2;3;5;6;10;15;30}

=>n \(\in\) {-33;-18;-13;-9;.......27}

Vậy..............

4 tháng 7 2016

n2+13n chia hết cho n+3

=>n2+3n+10n+30-30 chia hết cho n+3

=>n.(n+3)+10.(n+3)-30 chia hết cho n+3

=>(n+10).(n+3)-30 chia hết cho n+3

Mà (n+10).(n+3) chia hết cho n+3

=>30 chia hết cho n+3

=>n+3\(\in\){-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}

=>n\(\in\){-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}

29 tháng 7 2018

a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Để A nhận giá trị nguyên

=> 5/2n+3 thuộc Z

=> 5 chia hết cho 2n+3

=> 2n+3 thuộc Ư(5)={1;-1;5;-5}

nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)

2n+3 = -1 => 2n = -4 => n = -2 (TM)

2n+3 = 5 => 2n = 2 => n = 1 (TM)

2n+3 = -5 => 2n = 8 => n = -4 (TM)

KL:...

b) tìm n thuộc Z để A là phân số tối giản

Để A là phân số tối giản

\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)

29 tháng 7 2018

a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3

\(\Rightarrow4n+1⋮2n+3\)(1)

Lại có:\(\left(2n+3\right)\times2⋮2n+3\)

\(\Rightarrow4n+6⋮2n+3\)(2)

Từ (1) và (2) suy ra:

\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)

\(\Rightarrow4n+6-4n-1⋮2n+3\)

\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)

\(\Rightarrow5⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(5\right)\)

mà Ư(5)=(-5;-1;1;5)

\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)

\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)

\(\Rightarrow n\in\left(-4;-2;2;4\right)\)

Vậy với \(n\in\left(-4;-2;2;4\right)\)