K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232

= (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1) - 232

= (24 - 1)(24 + 1)(28 + 1)(216 + 1) - 232

= (28 - 1)(28 + 1)(216 + 1) - 232

= (216 - 1)(216 + 1) - 232

= (232 - 1) - 232

= 232 - 1 - 232

= -1

11 tháng 9 2016

Nhân với 2-1 áp dụng bất đẳng thức a^2-b^2=(a-b)(a+b)

=> 2^64-1

11 tháng 9 2016

(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=[3(22+1)(24+1)](28+1)(216+1)(232+1)

=[(22-1)(22+1)](24+1)(28+1)(216+1)(232+1)

=[(24-1)(24+1)](28+1)(216+1)(232+1)

=[(28-1)(28+1)](216+1)(232+1)

=[(216-1)(216+1)](232+1)

=(232-1)(232+1)

30 tháng 7 2018

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

31 tháng 10 2018

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{32}-1\right)-2^{32}\)

\(=-1\)

31 tháng 10 2018

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2^4-1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^8-1)(2^8+1)(2^16+1)-2^32=(2^16-1)(2^16+1)-2^32=2^32-1-2^32=-1

24 tháng 10 2018

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=2^{64}-1\)

Vậy \(A=2^{64}-1\)

5 tháng 11 2018

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(A=2^{64}-1\)

23 tháng 6 2017

Giúp mình làm bài này nhé!!!eoeoeoeoeoeo

23 tháng 6 2017

Ta có:

\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2+1\right)\left(2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Vậy...

17 tháng 8 2019

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=2^{64}-1\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

17 tháng 8 2019

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)

Thay 264 - 1 vào B, ta được :

\(2^{64}-1-2^{64}=-1\)