Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-3)(x-7)<0
x-3<0 hoặc x-7<0
x<3 hoặc x <7
Vậy x<3 hoặc x<7
b)(x-8)x-1+(x-8)x+21=0
(x-8)x-1+(x-8)x+1.(x-8)20=0
(x-8)x-1.(1+(x-8)20)=0
(x-8)x-1=0 hoặc 1+(x-8)20=0
x-8=0 hoặc (x-8)20 =-1(vô lí)
x=8
Vậy x=8
c) TH1 : x <=3 thì |3 -x| = 3 -x do đó ta đc 3 - x + 3x - 1 =0=> x = -1
TH2 : x > 3 thì |3 -x| = x -3, do đó ta đc : x - 3 + 3x -1 =0 => x = 1
a, Xét (3x-5)^2006; (y^2-1)^2008;9x-7)^2100 lú nào cũng lớn hơn hoặc bằng 0 nên suy ra (3x-5)^2006 +(Y^2-1)^2008+(x-7)^2100 >hoặc bằng 0 . Dể cộng vào bằng 0 thì (3x-5)^2006 =0; (y^2-1)^2008=0; (x-7)^2100=0 suy ra 3x-5=0;Y^2-1=0;'x-7=0
3x=5,x=5/3; y^2=1 ,y=+ - 1;x=7
a)
2009-|x-2009|=x
=> 2009-x=|x-2009|
=> 2009-x=|2009-x|
=> 2009-x=2009-x
vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài
b)
(2x-1)2008+(y-2/5)2008 +|x+y+z|=0
ta có: (2x-1)2008 luôn lớn hơn hoặc bằng 0
(y-2/5)2008 luôn lớn hơn hoặc bằng 0
|x+y+z| luôn lớn hơn hoặc bằng 0
dấu "=" xảy ra khi
2x-1=y-2/5=x+y+z=0
+2x-1=0=> 2x=1=> x=1/2
+y-2/5=0=> y=2/5
+x+y+z=0=> 1/2+2/5+z=0
=> z=-9/10
a) \(2009-\left|x-2009\right|=x\)
\(\left|x-2009\right|=2009-x\)
\(\Rightarrow\orbr{\begin{cases}x-2009=x-2009\\x-2009=2009-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\2x=4018\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\x=2009\end{cases}}\)
Vậy với mọi x thì đẳng thức luôn đúng
b) Thiếu đề thì phải, ( y- )2018 ?
a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)
b: 2015-|x-2015|=x
=>|x-2015|=2015-x
=>x-2015<=0
hay x<=2015
d: |x-999|+|1998-2x|=0
=>x-999=0
hay x=999
Bài 2 )
\(a\left(y+z\right)=b\left(x+z\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(x+z\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)
\(\Leftrightarrow\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}\)
Đặt \(\frac{bc}{y+z}=\frac{ac}{x+z}=\frac{ab}{x+y}=k\)
\(\Rightarrow\left\{\begin{matrix}bc=k\left(y+z\right)=ky+kz\\ac=k\left(x+z\right)=kx+kz\\ab=k\left(x+y\right)=kx+ky\end{matrix}\right.\) (1)
Gỉa sử điều cần chứng minh là đúng ta có
\(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\frac{y-z}{ab-ac}=\frac{z-x}{bc-ab}=\frac{x-y}{ac-bc}\)
Thế (1) vào biểu thức
\(\frac{y-z}{kx+ky-\left(kx+kz\right)}=\frac{z-x}{ky+kz-\left(kx+ky\right)}=\frac{x-y}{kx+kz-\left(ky+kz\right)}\)
\(\Leftrightarrow\frac{y-z}{ky-kz}=\frac{z-x}{kz-kx}=\frac{x-y}{kx-ky}\)
\(\Leftrightarrow\frac{y-z}{k\left(y-z\right)}=\frac{z-x}{k\left(z-x\right)}=\frac{x-y}{k\left(x-y\right)}\)
\(\Leftrightarrow\frac{1}{k}=\frac{1}{k}=\frac{1}{k}\) ( điều này luôn luôn đúng )
\(\Rightarrow\) ĐPCM
a, 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x
=> x = 2009