Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có:
x/(y+z+t) = y/(x+z+t)=z/(x+y+t)=t/(y+z+x)= (x+y+z+t)/3(x+y+z+t)=1/3
=> 3x = y+z+t
3y= x+z+t
3z= x+y+t
3t= x+y+z
Cộng các đẳng thức trên vế theo vế ta suy ra:
x+y+z+t = 0
=> x+ y=-(z+t) ; y+z=-(x+t); z+t=-(x+y); t+x=-(z+y)
Thế vào P ta được: P = -(z+t)/(z+t) -(t+x)/(t+x) - (x+y)/(x+y) - (z+y)/(z+y) = -4
a: \(F=x^3y^2z-xy^2z^3\)
Khi x=3; y=-2; z=1 thì \(F=3^3\cdot\left(-2\right)^2\cdot1-3\cdot\left(-2\right)^2\cdot1^3=27\cdot4-3\cdot4=96\)
c: x=-y; y=2z
nên x=-2z
Thay x=-2z; y=2z vào F=-1/8, ta được:
\(\left(-2z\right)^3\cdot\left(2z\right)^2\cdot z-\left(-2z\right)\cdot\left(2z\right)^2\cdot z^3=\dfrac{-1}{8}\)
=>\(-8z^3\cdot4z^2\cdot z+2z\cdot4z^2\cdot z^3=\dfrac{-1}{8}\)
\(\Leftrightarrow-24z^6=\dfrac{-1}{8}\)
\(\Leftrightarrow z^6=\dfrac{1}{192}\)
hay \(z=\pm\dfrac{1}{2\sqrt{3}}\)