K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:

a)

Áp dụng định lý Pitago cho tam giác vuông $BAD$:

\(BD=\sqrt{BA^2+AD^2}=\sqrt{8^2+6^2}=10\) (cm)

Xét tam giác $BDA$ có phân giác $DM$, áp dụng tính chất đường phân giác ta có: \(\frac{MB}{MA}=\frac{DB}{DA}=\frac{10}{6}=\frac{5}{3}\)

\(\Rightarrow \frac{MB}{AB}=\frac{5}{8}\Rightarrow MB=\frac{5}{8}.AB=5\) (cm)

b)

Áp dụng tính chất đường phân giác cho các tam giác sau:

\(\triangle BDA\), phân giác $DM$: \(\frac{MB}{MA}=\frac{DB}{DA}(1)\)

\(\triangle BDC,\) phân giác $DN$: \(\frac{NB}{NC}=\frac{DB}{DC}(2)\)

Mà $DA=DC$ nên \(\frac{DB}{DA}=\frac{DB}{DC}(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{MB}{MA}=\frac{NB}{NC}\). Theo định lý Ta-let đảo suy ra \(MN\parallel AC\) (đpcm)

c)

\(AC=2AD=12\) (cm)

\(MA=BA-BM=8-5=3\) (cm)

Vì $MN\parallel AC$ (cmt) và góc $\widehat{A}=90^0$ nên tứ giác $MNCA$ là hình thang vuông.

\(MN\parallel AC\) nên theo đl Ta-let: \(\frac{MN}{AC}=\frac{MB}{BA}=\frac{5}{8}\) (đã cm ở phần a)

\(\Rightarrow MN=\frac{5}{8}.AC=\frac{5}{8}.12=7,5\) (cm)

Vậy diện tích $MNCA$ là:

\(S=\frac{(MN+AC).MA}{2}=\frac{(7,5+12).3}{2}=29,25\) (cm vuông)

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Hình vẽ:

Ôn tập: Tam giác đồng dạng

a: AD=DC=6/2=3cm

BD=căn 8^2+3^2=căn 73(cm)

DM là phân giác

=>BM/BD=MA/AD

=>BM/căn 73=MA/3=(BM+MA)/(căn 73+3)=8/căn 73+3

=>BM=8*căn 73/3+căn 73(cm)

b: Xét ΔBAD có DM là phân giác

nen BM/MA=BD/DA=BD/DC

Xét ΔBDC có DN là phân giác

nên BN/NC=BD/DC

=>BM/MA=BN/NC

=>MN//AC

c: Xét tứ giác MNCA có MN//CA và góc MAC=90 độ

nên MNCA là hình thang vuông

b) Xét ΔBDA có 

DM là đường phân giác ứng với cạnh AB

nên \(\dfrac{BM}{MA}=\dfrac{BD}{DA}\)(1)

Xét ΔBDC có 

DN là đường phân giác ứng với cạnh BC

nên \(\dfrac{BN}{NC}=\dfrac{BD}{DC}\)(2)

Ta có: D là trung điểm của AC(gt)

nên DA=DC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{BM}{MA}=\dfrac{BN}{NC}\)

hay MN//AC(Định lí Ta lét đảo)

c) Xét tứ giác MNCA có MN//AC(cmt)

nên MNCA là hình thang

mà \(\widehat{MAC}=90^0\)

nên MNCA là hình thang vuông

Bài 1: 

a: BC=17cm

AH=120/7(cm)

b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

Suy ra: AH=MN=120/7(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nen \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

14 tháng 3 2022

chữ hơi xấu mong bạn thông cảm

undefinedundefined