K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

Sửa đề; AE là phân giác

a: Xét ΔABE và ΔADE có 

AB=AD
\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: BE=DE

b: Xét ΔEBK và ΔEDC có 

\(\widehat{BEK}=\widehat{DEC}\)

EB=ED

\(\widehat{EBK}=\widehat{EDC}\)

Do đó: ΔEBK=ΔEDC

c: ta có: AB=AD

EB=ED

DO đó:AE là đường trung trực của BD

Ta có: ΔAKC cân tại A

mà AE là đường phân giác

nên AE là đường trung trực của CK

12 tháng 3 2017

thiếu đề

16 tháng 9 2017

Ta có :

\(\left|x-1,5\right|+\left|2,5-x\right|=0\)

\(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) (vô lí)

Vậy ko tìm dc x thỏa mãn theo yêu cầu

16 tháng 9 2017

Có tìm đc gt thỏa mãn:

\(\left\{{}\begin{matrix}x_1=1,5\\x_2=2,5\end{matrix}\right.\)

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

a: Xét ΔABD và ΔACE có 

\(\widehat{ABD}=\widehat{ACE}\)

AB=AC
\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: AD=AE

Xét ΔABC có AE/AB=AD/AC

nên DE//BC

b: Ta có ΔADE cân tại A

mà AN là đường trung tuyến

nên AN\(\perp\)DE

=>AN\(\perp\)BC