K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

4a=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+........+98.99.100(101-97)

4a=1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100

4a=98.99.100.101

a=(98.99.100.101):4=24497550

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

2 tháng 1 2018

Đặt A = 1 x 2 x 3 + 2 x 3 x 4 + 3 x 4 x 5 +....+ 98 x 99 x 100

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 4 + 4 x 5 x 4 +....+ 98 x 99 x 100 x 4

4A = 1 x 2 x 3 x ( 4 - 0 ) + 2 x 3 x 4 x ( 5 - 1 ) + 4 x 5 x 6 x ( 7 - 3 ) +....+ 98 x 99 x 100 x ( 101 - 97 )

4A = 1 x 2 x 3 x 4 + 2 x 3 x 4 x 5 - 1 x 2 x 3 x 4 + 4 x 5 x 6 x 7 - 3 x 4 x 5 x 6 + .... + 98 x 99 x 100 x 101 - 98 x 99 x 100 x 97

A = 98 x 99 x 100 x 97 / 4

A = 98 x 99 x 25 x 97

5 tháng 8 2015

4A=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+.....+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+98.99.100.101-97.98.99.100

4A=98.99.100.101

A=(98.99.100.101):4=24497550

28 tháng 6 2017

Cứ một dãy số  thì có 2 thừa số bị gạch nên cuối cùng chỉ còn 1x100

24 tháng 4 2017

Giải:

Ta có:

\(A=2\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\right).\)

\(A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}.\)

\(A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}.\)

\(A=\left(\dfrac{1}{2.3}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{3.4}-\dfrac{1}{3.4}\right)+...+\left(\dfrac{1}{98.99}-\dfrac{1}{98.99}\right)+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)

\(A=0+0+...+0+\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right).\)

\(A=\dfrac{1}{1.2}-\dfrac{1}{99.100}.\)

\(A=\dfrac{1}{2}-\dfrac{1}{9900}.\)

\(A=\dfrac{4950}{9900}-\dfrac{1}{9900}.\)

\(A=\dfrac{4949}{9900}.\)

Vậy \(A=\dfrac{4949}{9900}.\)

~ Chúc bn học tốt!!! ~

Bài mik đúng thì nhớ tick mik nha!!!

24 tháng 4 2017

:P

31 tháng 5 2017

\(\frac{99}{100}\)nhé bạn ✿❀✿❀✿❀

31 tháng 5 2017

Đặt A là tên biểu thức

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2A=\frac{1}{2}-\frac{1}{9900}\)

\(2A=\frac{4949}{9900}\)

\(A=\frac{4949}{9900}:2=\frac{4949}{19800}\)

3 tháng 8 2015

bạn li-ke cho I love U thì ai giải cho bạn nữa