K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

A N B C H K S

Theo giả thiết, \(HA=HC=\frac{1}{2}AC=a\) và \(SH\perp\left(ABC\right)\)

Xét \(\Delta v.ABC\) ta có : \(BC=AC.\cos\widehat{ACB}=2a\cos30^0=\sqrt{3}a\)

Do đó : \(S_{\Delta.ABC}=\frac{1}{2}AC.BC.\sin\widehat{ACB}=\frac{1}{2}.2a.\sqrt{3}a.\sin30^0=\frac{\sqrt{3}a^2}{2}\)

Vậy \(V_{S.ABC}=\frac{1}{3}SH.S_{ABC}=\frac{1}{3}.\sqrt{2}a.\frac{\sqrt{3}}{2}a^2=\frac{\sqrt{6}a^3}{6}\)

Vì CA=2HA nên d(C,(SAB))=2d(H, (SAB))  (1)

Gọi N là trung điểm của Ab, ta có HN là đường trung bình của tam giác ABC

Do đó HN//BC suy ra AB vuông góc với HN.

Lại có AB vuông góc với Sh nên AB vuông góc với mặt phẳng (SHN).

Do đó mặt phẳng (SAB) vuông góc với mặt phẳng (SHN).

Mà Sn là giao tuyến của 2 mặt phẳng vừa nêu, nên trong mặt phẳng (SHN), hạ HK vuông góc với SN, ta có HK vuông góc với mặt phẳng (SAB)

Vì vậy d(J, (SAB)) = HK. Kết hợp với (1), suy ra d(C. (SAB))=2HK (2)

Vì \(SH\perp\left(ABC\right)\) nên \(SH\perp HN\), xét tam giác v.SHN, ta có :

\(\frac{1}{HK^2}=\frac{1}{SH^2}+\frac{1}{HN^2}=\frac{1}{2a^2}+\frac{1}{HN^2}\)

Vì HN là đường trung bình của tam giác ABC nên \(HN=\frac{1}{2}BC=\frac{\sqrt{3}a}{2}\)

Do \(\frac{1}{HK^2}=\frac{1}{2a^2}+\frac{4}{3a^2}=\frac{11}{6a^2}\) suy ra \(HK=\frac{\sqrt{66}a}{11}\) (3)

Thế (3) vào (2) ta được \(d\left(C,\left(SAB\right)\right)=\frac{\sqrt{66}a}{11}\)

1 tháng 4 2016

Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với (ABC) \(\Rightarrow SA\perp\left(ABC\right)\)

\(AB\perp BC\Rightarrow SB\perp BC\Rightarrow\widehat{SBA}\) là góc giữa 2 mặt phẳng (SBC) và mặt phẳng (ABC)

\(\Rightarrow\widehat{SBA}=60^o\)

\(\Rightarrow SA=AB.\tan\widehat{SBA}=2a\sqrt{3}\)

Mặt phẳng qua SM và song song với BC, cắt AC tại N

\(\Rightarrow MN||BC\) và N là trung điểm của \(AC\\ \)

\(MN=\frac{BC}{2}=a;BM=\frac{AB}{2}=a\)

Diện tích \(S_{BCNM}=\frac{\left(BC+MN\right).BM}{2}=\frac{3a^2}{2}\)

Thể tích \(V_{S.BCNM}=\frac{1}{3}S_{BCNM}.SA=a^3\sqrt{3}\)

Kẻ đường thẳng \(\Delta\) đi qua N, song song với AB

Hạ \(AD\perp\Delta\left(D\in\Delta\right)\Rightarrow AB||\left(SND\right)\)

                                 \(\Rightarrow d\left(AB;SN\right)=d\left(AB,\left(SND\right)\right)=d\left(A,\left(SND\right)\right)\)

Hạ \(AH\perp SD\left(H\in SD\right)\Rightarrow AH\perp\left(SND\right)\Rightarrow d\left(A,\left(SND\right)\right)=AH\)

Tam giác SAD vuông tại A : \(\begin{cases}AH\perp SD\\AD=MN=a\end{cases}\)

                                            \(\Rightarrow d\left(AB,SN\right)=AH=\frac{SA.AD}{\sqrt{SA^2+AD^2}}=\frac{2a\sqrt{39}}{13}\)

 

31 tháng 3 2016

1242

 

15 tháng 12 2016

tam giác ABC cân tại S là sao vậy bạn

 

28 tháng 3 2016
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

18 tháng 12 2016

a) Tính \(V_{S.ABM}\)

Tam giác ABC cân tại A , SBC cân tại S \(\Rightarrow AM\perp BC;SM\perp BC\) tại M

Vì mp(SBC) vuông góc với mặt đáy suy ra SM vuông góc với mặt đáy

Góc giữa SB và mặt đáy là góc SBM=300

\(\Rightarrow SM=BMtan.\widehat{SBM}=\frac{a}{2}.tan30^0=\frac{a}{2\sqrt{3}}\)

\(\Rightarrow V_{S.ABM}=\frac{1}{3}.SM.S_{ABM}=\frac{1}{3}.\frac{a}{2\sqrt{3}}.\frac{1}{2}.\frac{a}{2}.\frac{a\sqrt{3}}{2}=\frac{a^3}{48}\)

b) Tính k/c SB và AM

Kẻ MH vuông góc với SB tại H

Dễ dàng chứng minh MH là đoạn vuông góc chung giữa SB và AM

Vậy khảong cách giữa SB và AM bằng đoạn MH và bằng \(\frac{BM}{cos.\widehat{HBM}}=\frac{\frac{a}{2}}{cos30^0}=\frac{a}{\sqrt{3}}\)

23 tháng 4 2020

Bạn làm không đúng rồi bạn ơi

7 tháng 4 2016

Ta có \(\left(SHC\right)\cap\left(SHD\right)=SH\)

Từ giả thiết \(\left(SHC\right)\perp\left(ABCD\right);\left(SHD\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

                \(\Leftrightarrow V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}AB.AD.SH=\frac{1}{3}a^2\sqrt{3}.SH\left(1\right)\)

Ta có \(SH\perp\left(ABCD\right)\Rightarrow HD\) là hình chiếu của SD trên (ABCD), suy ra góc giữa SD và (ABCD) là \(\widehat{SDH}=60^0\Rightarrow SH=HD\tan\widehat{SDHH}=\frac{a\sqrt{39}}{2}\)

Khi đó \(V_{S.ABCD}=\frac{1}{2}a^3\sqrt{13}\)

Dựng hình bình hành ACBE. Khi đó AC//BE suy ra AC//(SBE)

\(\Rightarrow d\left(AC,SB\right)=d\left(AC,\left(SBE\right)\right)=d\left(A,\left(SBE\right)\right)=2d\left(H,\left(SBE\right)\right)\)

Gọi K, I lần lượt là hình chiếu của H trên BE và SK.

Khi đó \(BE\perp KH,BE\perp SH\Rightarrow BE\perp HI\left(1\right)\)

Mặt khác \(HI\perp SK\left(2\right)\)

Từ (1) và (2) suy ra \(HI\perp\left(SBE\right)\Rightarrow d\left(H,\left(SBE\right)\right)=HI\)

Tính được \(HK=\frac{a\sqrt{3}}{4};HI=\frac{a\sqrt{39}}{\sqrt{212}}\)

\(\Rightarrow d\left(AC,SB\right)=2d\left(H,\left(SBE\right)\right)=2HI=\frac{a\sqrt{39}}{\sqrt{53}}=\frac{a\sqrt{2067}}{53}\)

27 tháng 9 2017

Ý C

25 tháng 4 2018

de ***** tu lam dihihi

28 tháng 3 2018

 

21 tháng 5 2016

z C B O A D y S x M N

a. Do ABCD là hình thoi có tâm là O nên từ giả thiết ta có :

\(C=\left(-2;0;0\right)\)

\(D=\left(0;-1;0\right)\)

Từ đó M là trung điểm của SC nên :

\(M\left(-1;0=-\sqrt{2}\right)\)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{BM}=\left(-1;-1;\sqrt{2}\right)\)

Gọi \(\alpha\) là góc giữa 2 đường thẳng SA, MB, ta có :

\(\cos\alpha=\frac{\left|\overrightarrow{SA.}\overrightarrow{BM}\right|}{\left|\overrightarrow{SA}\right|.\left|\overrightarrow{MB}\right|}=\frac{\left|-2-4\right|}{\sqrt{4+8}.\sqrt{1+2+1}}=\frac{6}{4\sqrt{3}}=\frac{\sqrt{3}}{2}\)

Vậy \(\alpha=60^0\)

Để tính khoảng cách giữa 2 đường thẳng chéo nhau SA, BM ta sử dụng công thức :

\(d\left(SA;BM\right)=\frac{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}\right|}{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|}\)  (1)

Theo công thức  xác định tọa độ vecto \(\left[\overrightarrow{SA};\overrightarrow{BM}\right]\) ta có :

\(\left[\overrightarrow{SA};\overrightarrow{BM}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}2&0\\-1&-1\end{matrix}\right|\right)\)

                  \(=\left(-2\sqrt{2};1;0\right)\)

\(\Rightarrow\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|=\sqrt{12}\)

\(\overrightarrow{AB}=\left(-2;1;0\right)\)

\(\Rightarrow\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}=4\sqrt{2}\)

Thay vào (1) ta có :

\(d\left(SA;BM\right)=\frac{4\sqrt{2}}{\sqrt{12}}=\frac{2\sqrt{6}}{3}\)

b. Vì AB \\ mặt phẳng (SDC) nên MN \\ DC. Suy ra N là trung điểm của SD

\(\Rightarrow N=\left(0;-\frac{1}{2};\sqrt{2}\right)\)

Dễ thấy :

\(V_{S.ABMN}=V_{S.ABN}+V_{S.BMN}\)

              \(=\frac{1}{6}\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{SN}\right|+\frac{1}{6}\left|\left[\overrightarrow{SB};\overrightarrow{SM}\right].\overrightarrow{SN}\right|\)    (2)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{SN}=\left(0;-\frac{1}{2};-\sqrt{2}\right)\)

         \(\overrightarrow{SB}=\left(0;1;-2\sqrt{2}\right)\)

         \(\overrightarrow{SM}=\left(-1;0;-\sqrt{2}\right)\)

Ta lại có :

\(\left[\overrightarrow{SA};\overrightarrow{SB}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&-2\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\-2\sqrt{2}&0\end{matrix}\right|;\left|\begin{matrix}2&0\\0&1\end{matrix}\right|\right)\)

                 \(=\left(2\sqrt{2};4\sqrt{2};2\right)\)

\(\left[\overrightarrow{SB};\overrightarrow{SM}\right]=\left(\left|\begin{matrix}1&-2\sqrt{2}\\0&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&0\\-\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}0&1\\-1&0\end{matrix}\right|\right)\)

                 \(=\left(-\sqrt{2};2\sqrt{2};1\right)\)

Thay vào (2) được :

\(V_{S.ABMN}=\frac{1}{6}\left(\left|-2\sqrt{2}-2\sqrt{2}\right|+\left|-\sqrt{2}-\sqrt{2}\right|\right)=\sqrt{2}\)