Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a số tận cùng là 2
b số tận cùng là 4
c số tận cùng là 1
d số tận cùng là 1
a) ta có: x+16= (x+1)+15
mà x+1 chia hết cho x+1
suy ra 15 chia hết cho x+1
suy ra x+1 thuộc Ư(15)
Ư(15)= 1;3;5;15
TH1: x+1=1 suy ra x=0
TH2: x+1=3 suy ra x=2
TH3: x+1 = 5 suy ra x =4
TH4 x+1 = 15 suy ra x=14
Vậy x=0;2;4 hoặc 14
b) x lớn nhất và 36;45;18 chia hết cho x
suy ra x thuộc ƯCLN(36;45;18)
Ta có: 36= 3^2.2^2
45= 5.3^2
18=3^2.2
suy ra ƯCLN(36;45;18) = 3^2=9
suy ra x=9
Vậy x=9
c) 150;84;30 chia hết cho x suy ra x thuộc ƯC (150;84;30)
ta có: 150=5^2.3.2
84=7.3.2^2
30=5.3.2
suy ra ƯCLN(150;84;30)=2.3=6
Ư(6)= x nên x nhận các giá trị là 1;2;3;6
mà 0<x<16 nên x =1;2;3;6
Vậy x = 1;2;3;6
d) 10^15+8 = 100....000 + 8 ( có 15 số 0)
= 100....0008
Vì tận cùng là 8 nên 10^15+8 chia hết cho 2
Vì tổng các chữ số là 9 nên 10^15 chia hết cho 9
Vậy 10615 chia hết cho 2 và 9
b2) Nhóm 2 số 1 cặp, ta có:
A= 2.(1+2) + 2^3 . (1+2) + .....+ 2^2009. (1+2)
A= 2.3+2^3.3+...+2^2009.3
A= 3. ( 2+2^3+...+2^2009) chia hết cho 3
Vậy A chia hết cho 3
Nhóm 3 số 1 cặp
A= 2.(1+2+2^2) + 2^4.(1+2+2^2)+....+2^2008. ( 1+2+2^2)
A= 2.7+2^3.7+...+2^2008.7
A= 7. (2+2^4+...+ 2^2008) chia hết cho 7
Vậy A chia hết cho 7
b) 2.A= 2.(1+2+2^2+...+2^2010)
2.A= 2+2^2+2^3+...+2^2010+2011
2.A - A = (2+2^2+2^3+...+2^2011) - (1+2+2^2+...+2^2010)
1.A = 2^2011 - 1
Ta thấy: A= 2^2011-1 B= 2^2011-1
suy ra A=B
Vậy A=B
c) A<B
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A< 1-\frac{1}{10}=\frac{9}{10}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Chúc bạn học tốt ~
ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\left(đpcm\right)\)