Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a/ \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
b/ \(\left(\dfrac{2}{3}x-\dfrac{1}{5}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{5}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
Vậy .........
2/ a/
Ta có :
\(5^{222}=\left(5^2\right)^{111}=25^{111}\)
\(2^{555}=\left(2^5\right)^{111}=32^{111}\)
Vì \(25^{111}< 32^{111}\Leftrightarrow5^{222}< 2^{555}\)
b/ Ta có :
\(3^{48}=\left(3^4\right)^{12}=81^{12}\)
\(4^{36}=\left(4^3\right)^{12}=64^{12}\)
Vì \(81^{12}>64^{12}\Leftrightarrow3^{48}>4^{36}\)
1)
a) \(0,25^x\cdot12^x=243\)
\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(38^y:19^y=512\)
\(\Leftrightarrow2y\cdot y=512\)
\(\Leftrightarrow2y^2=512\)
\(\Leftrightarrow y^2=256\)
\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)
Vậy \(y_1=-16;y_2=16\)
2)
a) \(3^x+3^{x+2}=2430\)
\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)
\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)
\(\Leftrightarrow10\cdot3^x=2430\)
\(\Leftrightarrow3^x=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(2^{x+3}-2^x=224\)
\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)
\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)
\(\Leftrightarrow7\cdot2^x=224\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
3)
a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)
b) \(\left(x+0,7\right)^3=-27\)
\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x+\dfrac{3}{10}=-3\)
\(\Leftrightarrow x=-3-\dfrac{3}{10}\)
\(\Leftrightarrow x=-\dfrac{37}{10}\)
Vậy \(x=-\dfrac{37}{10}\)
4)
a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)
b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=1\)
\(\Leftrightarrow2x=1+1\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
1. a) \(0,25^x.12^x=243\)
\(\Rightarrow\left(0,25.12\right)^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(38^y:19^y=512\)
\(\Rightarrow\left(38:19\right)^y=512\)
\(\Rightarrow2^y=2^9\)
\(\Rightarrow y=9\)
Vậy \(y=9.\)
2) a) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x\left(1+9\right)=2430\)
\(\Rightarrow3^x=243=3^5\)
\(\Rightarrow x=5\)
Vậy x=5.
b) \(2^{x+3}-2^x=224\)
\(\Rightarrow2^x\left(8-1\right)=224\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
Vậy x=5.
Bài 3: dễ tự làm.
a: =>x=(-2/3)^5:(-2/3)^2=(-2/3)^3=-8/27
b: =>x*(-1/3)^3=(-1/3)^4
=>x=-1/3
d: =>3x-2=-3
=>3x=-1
=>x=-1/3
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a) \(\left[\left(\dfrac{3}{5}\right)^2-\left(\dfrac{2}{5}\right)^2\right]\cdot X=\left(\dfrac{1}{5}\right)^3\)
\(\left(\dfrac{3}{5}-\dfrac{2}{5}\right)\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot X=\dfrac{1}{125}\)
\(\dfrac{1}{5}\cdot1\cdot X=\dfrac{1}{125}\)
\(X=\dfrac{1}{125}:\dfrac{1}{5}=\dfrac{1}{25}\)
b) \(1\dfrac{2}{5}\cdot x+\dfrac{3}{7}=\dfrac{-4}{5}\)
\(1\dfrac{2}{5}\cdot x=\dfrac{-4}{5}-\dfrac{3}{7}\)
\(1\dfrac{2}{5}\cdot x=-\dfrac{43}{35}\)
\(x=-\dfrac{43}{35}:1\dfrac{2}{5}=-\dfrac{43}{49}\)
c) \(\left(3x-2\right)^2=9\)
*Nếu \(9=3^2\) thì:
\(3x-2=3\)
\(3x=5\Rightarrow x=\dfrac{5}{3}\)
*Nếu \(9=\left(-3\right)^2\) thì
\(3x-2=-3\)
\(3x=-1\Rightarrow x=-\dfrac{1}{3}\)
d) \(\left|x+\dfrac{1}{3}\right|-4=-1\)
\(\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Chúc bạn học giỏi.
a)\(\dfrac{3^2-2^2}{5^2}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow\dfrac{5}{5^2}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow\dfrac{1}{5}.x=\dfrac{1}{5^3}\)
\(\Leftrightarrow x=\dfrac{1}{25}\)
b)\(\dfrac{7}{5}x+\dfrac{3}{7}=-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{7}{5}x=-\dfrac{43}{35}\)
\(\Leftrightarrow x=\dfrac{-43}{49}\)
c)\(9x^2-12x+4=9\)
\(\Leftrightarrow9x^2-12x-5=0\)
\(\Leftrightarrow9x^2-15x+3x-5=0\)
\(\Leftrightarrow3x\left(3x-5\right)+3x-5=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
d)\(\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
a: =>x-1/2=1/3
=>x=5/6
b: =>|2x-1|=x+1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x-1-x-1\right)\left(2x-1+x+1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(x-2\right)\left(3x\right)=0\end{matrix}\right.\)
hay \(x\in\left\{2;0\right\}\)
c: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
1. Tìm x:
a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80
b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)
c) Xem lại đề
d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)
e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2
3. Tính giá trị của biểu thức:
\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)
\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)
\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
1/ a/ \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{2}{5}-3x\right)^2=\left(\dfrac{3}{5}\right)^2\\\left(\dfrac{2}{5}-3x\right)^2=\left(\dfrac{-3}{5}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...........
b/ \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\left(\dfrac{2}{3}x-\dfrac{1}{5}\right)^5=\left(\dfrac{1}{3}\right)^5\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{5}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{8}{15}\)
\(\Leftrightarrow x=\dfrac{24}{30}\)
Vậy ....